Citation: Feng Yadong, Liu Ying, Fu Qi, Zou Zhongai, Shen Jinhai, Cui Xiuling. Construction of diaminobenzoquinone imines via ferrocene-initiated radical reaction of benzoquinone with amines[J]. Chinese Chemical Letters, ;2020, 31(3): 733-735. doi: 10.1016/j.cclet.2019.09.026 shu

Construction of diaminobenzoquinone imines via ferrocene-initiated radical reaction of benzoquinone with amines

    * Corresponding authors at: College of Environment and Public Health Xiamen Huaxia University Xiamen 361024 China.
    E-mail addresses: fengyd@hxxy.edu.cn (Y. Feng) cuixl@hqu.edu.cn (X. Cui).
  • Received Date: 24 July 2019
    Revised Date: 9 September 2019
    Accepted Date: 9 September 2019
    Available Online: 22 March 2020

Figures(3)

  • A ferrocene-initiated radical reaction of benzoquinone with amines has been successfully developed for the direct access to diaminobenzoquinone imines in high yields, in which the commercially available and cheap ferrocene was employed as a radical initiator and TBHP was used as an oxidant. Moreover, this reaction could be achieved with low loading of ferrocene (0.5 mol%). This protocol is highly efficient with good substrate tolerance and provides a new approach for the construction of benzoquinone imines with potential pharmaceutical interest.
  • 加载中
    1. [1]

      (a) E. Prochazka, B.I. Escher, M.J. Plewa, F.D.L. Leusch, Chem. Res. Toxicol. 28 (2015) 2059-2068;
      (b) R. Mout, Z.D. Xu, A.K.H. Wolf, V.J. Davisson, G.K. Jarori, Malar. J.11 (2012) 54-54;
      (c) D. Tasdemir, R. Brun, V. Yardley, S.G. Franzblau, P. Ruedi, Chem. Biodiv. 3 (2006) 1230-1237;
      (d) L.F. Fieser, E.M. Chamberlin, J. Am. Chem. Soc. 70 (1948) 71-75;
      (e) B. Joy, S.N. Kumar, M.S. Soumya, et al., Phytomedicine 21 (2014) 1292-1297;
      (f)A.Cavalli, M.L.Bolognesi, S.Capsoni, etal., Angew.Chem.Int.Ed.46 (2007)3689-3692;
      (g) T.J. Monks, P. Hanzlik, G.M. Cohen, D. Ross, D.G. Graham, Toxicol. Appl. Pharmacol. 112 (1992) 2-16.

    2. [2]

      (a) J. Yu, H. Zhang, Q. Lu, et al., Chem. Ind. Eng. Progress 34 (2015) 1115-1121;
      (b) M.R. Halhalli, B. Sellergren, Polym. Chem. 6 (2015) 7320-7332;
      (c) M.A. Hanna, M.M. Girges, Acta Polym. 41 (1990) 354-360;
      (d) S. Rajappa, S.J. Shenoy, Tetrahedron 42 (1986) 5739-5746.

    3. [3]

      S. Rajappa, R. Sreenivasan, A.V. Rane, Tetrahedron Lett. 24 (1983) 3155-3158.  doi: 10.1016/S0040-4039(00)88121-6

    4. [4]

      V. Nair, C. Rajesh, R. Dhanya, A.U. Vinod, Tetrahedron Lett. 42 (2001) 2045-2046.  doi: 10.1016/S0040-4039(01)00072-7

    5. [5]

      V. Nair, R. Dhanya, S. Viji, Tetrahedron 61 (2005) 5843-5848.  doi: 10.1016/j.tet.2005.04.008

    6. [6]

      K.A. Parker, T.L. Mindt, Org. Lett. 4 (2002) 4265-4268.  doi: 10.1021/ol026849x

    7. [7]

      (a) Y. Park, Y. Kim, S. Chang, Chem. Rev. 117 (2017) 9247-9301;
      (b) J. Kim, S. Chang, Angew. Chem. Int. Ed. 53 (2014) 2203-2207;
      (c) T. Kang, Y. Kim, D. Lee, Z. Wang, S. Chang, J. Am. Chem. Soc.136 (2014) 4141-4144;
      (d) H. Hwang, J. Kim, J. Jeong, S. Chang, J. Am. Chem. Soc. 136 (2014) 10770-10776;
      (e) C. Pi, X. Cui, Y. Wu, J. Org. Chem. 80 (2015) 7333-7339;
      (f) M.E. Wei, L.H. Wang, Y.Y. Li, X. Cui, Chin. Chem. Lett. 26 (2015) 1336-1340;
      (g) X. Han, P. Lin, Q. Li, Chin. Chem. Lett. 30 (2019) 1495-1502;
      (h) S. Yuan, S. Wang, M. Zhao, et al., Chin. Chem. Lett. 31 (2020) 349-352;
      (i) Q. Huang, L. Zhu, D. Yi, X. Zhao, W. Wei, Chin. Chem. Lett. 31 (2020) 373-376;
      (j) X. Zhang, S. Dong, Q. Ding, X. Fan, G. Zhang, Chin.Chem. Lett. 30 (2019) 375-378;
      (k) L. Xie, S. Peng, L. Jiang, et al., Org. Chem. Front. 6 (2019) 167-171;
      (l) L. Xie, S. Peng, F. Liu, et al., ACS Sustainable Chem. Eng. 7 (2019) 7193-7199.

    8. [8]

      J.A. Jordan-Hore, C.C.C. Johansson, M. Gulias, E.M. Beck, M.J. Gaunt, J. Am. Chem. Soc. 130 (2008) 16184-16186.  doi: 10.1021/ja806543s

    9. [9]

      S.M. Paradine, M.C. White, J. Am. Chem. Soc. 134 (2012) 2036-2039.  doi: 10.1021/ja211600g

    10. [10]

      (a) Y. Feng, Y. Li, Y. Yu, L. Wang, X. Cui, RSC Adv. 8 (2018) 8450-8454;
      (b) Y. Feng, Z. Zhang, Q. Fu, et al., Chin. Chem. Lett. 31 (2020) 58-60.

    11. [11]

      (a) C. Liu, D. Liu, A. Lei, Acc. Chem. Res. 47 (2014) 3459-3470;
      (b) S.A. Girard, T. Knauber, C.J. Li, Angew. Chem. Int. Ed. 53 (2014) 74-100;
      (c) R. Braslau, M.O. Anderson, F. Rivera, et al., Tetrahedron 58 (2002) 5513-5523;
      (d) S. Bath, N.M. Laso, H. Lopez-Ruiz, B. Quiclet-Sire, S.Z. Zard, Chem. Commun. 34 (2003) 204-205;
      (e) J. Wang, C. Liu, J. Yuan, A. Lei, Angew. Chem. Int. Ed. 52 (2013) 2256-2259;
      (f) J. Xie, J. Yu, M. Rudolph, F. Rominger, A.S. Hashmi, Angew. Chem. Int. Ed. 55 (2016) 9416-9421;
      (g) C. Wang, J. Qin, X. Shen, et al., Angew. Chem. Int. Ed. 55 (2016) 685-688;
      (h) L.Y. Xie, S. Peng, F. Liu, et al., Org. Chem. Front. 5 (2018) 2604-2609;
      (i) L.Y. Xie, S. Peng, F. Liu, et al., Adv. Synth. Catal. 360 (2018) 4259-4264;
      (j) L. Xie, T. Fang, J. Tan, et al., Green Chem. 21 (2019) 3858-3863.

    12. [12]

      (a) D. Leifert, C.G. Daniliuc, A. Studer, Org. Lett. 15 (2013) 6286-6289;
      (b) S. Wertz, D. Leifert, A. Studer, Org. Lett. 15 (2013) 928-931.

    13. [13]

      Y. Feng, H. Zhang, Y. Yu, L. Yang, X. Cui, Eur. J. Org. Chem. 16 (2019) 2740-2744.

    14. [14]

      (a) L. Wang, D. Xiong, L. Jie, C. Yu, X. Cui, Chin. Chem. Lett. 29 (2018) 907-910;
      (b) L. Xu, T. Li, L. Wang, X. Cui, J. Org. Chem. 84 (2019) 560-567;
      (c) Z. Yang, L. Jie, Z. Yao, et al., Adv. Catal. Synth. 1 (2019) 214-258;
      (d) P. Chao, X. Yin, X. Cui, Y. Ma, Y. Wu, Org. Lett. 7 (2019) 2081-2084;
      (e) J. Ren, C. Pi, Y. Wu, X. Cui, Org. Lett. 11 (2019) 4067-4071; f) S. Huang, H. Li, X. Sun, et al., Org. Lett. 21 (2019) 5570-5574;
      (g) B. Wu, Z. Yang, H. Zhang, L. Wang, Cui X, Chem. Commun. 55 (2019) 4190-4193;
      (h) Z. Yang, Z. Song, L. Jie, L. Wang, X. Cui, Chem. Commun. 55 (2019) 6094-6097;
      (i) T. Yuan, C. Pi, C. You, et al., Chem. Commun. 55 (2019) 163-166;
      (k) T. Wan, S. Du, C. Pi, Y. Wang, R. Li, Y. Wu, X. Cui, ChemCatChem 11 (2019) 3791-3796;
      (l) S. Du, C. Pi, T. Wan, Y. Wu, X. Cui, Adv. Synth. Catal. 361 (2019) 1766-1770;
      (m) Z.H. Shen, C. Pi, X. Cui, Y. Wu, Chin. Chem. Lett. 30 (2019) 1374-1378.

  • 加载中
    1. [1]

      Ghodsieh BagherzadeAbbas ZaliArash Shokrolahi . Preparation of aromatic nitriles via direct oxidative conversion of benzyl alcohols, aldehydes and amines with pentylpyridinium tribromide in aqueous NH4OAc. Chinese Chemical Letters, 2015, 26(5): 603-606. doi: 10.1016/j.cclet.2015.01.009

    2. [2]

      Farhad ShiriniSeyyed Vahid AtghiaMojtaba Ghazi Jirdehi . Nanocrystalline TiO2-HClO4:A novel,efficient and recyclable catalyst for the chemoselective N-Boc protection of amines under solvent-free conditions. Chinese Chemical Letters, 2013, 24(01): 34-36.

    3. [3]

      Ai-E WangZong ChangYong-Peng LiuPei-Qiang Huang . Mild N-deacylation of secondary amides by alkylation with organocerium reagents. Chinese Chemical Letters, 2015, 26(9): 1055-1058. doi: 10.1016/j.cclet.2015.05.033

    4. [4]

      Goravanahalli M. RaghavendraChottanahalli S. Pavan KumarGejjalagere P. SureshaKanchugarakoppal S. RangappaKempegowda Mantelingu . T3P catalyzed one pot three-component synthesis of 2,3-disubstituted 3H-quinazolin-4-ones. Chinese Chemical Letters, 2015, 26(8): 963-968. doi: 10.1016/j.cclet.2015.03.037

    5. [5]

      Vinod T. Kamble Bhaskar S. Davane Sanjay A. Chavan Dnyanoba B. Muley Sandeep T. Atkore . Imino Diels-Alder reactions: One-pot synthesis of tetrahydroquinolines. Chinese Chemical Letters, 2010, 21(3): 265-268. doi: 10.1016/j.cclet.2009.11.016

    6. [6]

      Rahman Hosseinzadeh Yaghoub Sarrafi Nora Aghili . An efficient and mild protocol for the synthesis of unsymmetrical ureas in the absence of catalyst and additives. Chinese Chemical Letters, 2010, 21(10): 1171-1174. doi: 10.1016/j.cclet.2010.06.014

    7. [7]

      ZHANG YujingDAI XingchaoWANG HongliSHI Feng . Catalytic Synthesis of Formamides with Carbon Dioxide and Amines. Acta Physico-Chimica Sinica, 2018, 34(8): 845-857. doi: 10.3866/PKU.WHXB201701081

    8. [8]

      Liu Meng-MengMei QiongZhang Yi-XiaoBai PengGuo Xiang-Hai . Palladium-catalyzed amination of chloro-substituted 5-nitropyrimidines with amines. Chinese Chemical Letters, 2017, 28(3): 583-587. doi: 10.1016/j.cclet.2016.11.019

    9. [9]

      Ma Xian-TaoXu HaoXiao Ying-LinSu Chen-LiangLiu Jian-PingXu Qing . Direct synthesis of nitriles by Cu/DMEDA/TEMPO-catalyzed aerobic oxidation of primary amines with air. Chinese Chemical Letters, 2017, 28(6): 1336-1339. doi: 10.1016/j.cclet.2017.01.017

    10. [10]

      Mi XiaKong YuanfangZhang JingyuPi ChaoCui Xiuling . Visible-light-promoted sulfonylmethylation of imidazopyridines. Chinese Chemical Letters, 2019, 30(12): 2295-2298. doi: 10.1016/j.cclet.2019.09.040

    11. [11]

      Cao WeidiLiu XiaohuaFeng Xiaoming . Chiral organobases: Properties and applications in asymmetric catalysis. Chinese Chemical Letters, 2018, 29(8): 1201-1208. doi: 10.1016/j.cclet.2018.05.041

    12. [12]

      Fang GAO Yong Yuan YANG . UV-visible Absorption Studies of Tetrachloro-p-benzoquinone and Tertiary Amines Charge Transfer Complexes in Trichloromethane. Chinese Chemical Letters, 1999, 10(12): 1041-1044.

    13. [13]

      Jin Kua YOU Hui Huang WU . A SNIFTIRS STUDY OF THE BENZOQUINONE-BENZOHYDROQUINONE REDOX SYSTEM IN AQUEOUS SOLUTION. Chinese Chemical Letters, 1991, 2(1): 55-56.

    14. [14]

      Tianyong ZhangLiao ShengQiusheng YangShuang JiangYanhong WangChaohui JinBin Li . Synthesis, characterization and catalytic reactivity of pentacoordinate iron dicarbonyl as a model of the [Fe]-hydrogenase active site. Chinese Journal of Catalysis, 2015, 36(11): 2011-2019. doi: 10.1016/S1872-2067(15)60920-2

    15. [15]

      Ma XiantaoLi BoXiao YinglinYu XiaochunSu ChenliangXu Qing . Synthesis of Alkylated Amides and Amines by Cu(OTf)2-Catalyzed N-Alkylation of Nitriles and Amines with Alcohols. Chinese Journal of Organic Chemistry, 2017, 37(8): 2034-2043. doi: 10.6023/cjoc201703028

    16. [16]

      Chen FushanYang TaoZhao SonglinJiang TaotaoYu LuXiong HoufengGuo ChuankunRao YufangLiu YanLiu LiuZhou JianTu PengxiangNi JunZhang QunfengLi Xiaonian . Highly selective oxidation of amines to imines by Mn2O3 catalyst under eco-friendly conditions. Chinese Chemical Letters, 2019, 30(12): 2282-2286. doi: 10.1016/j.cclet.2019.09.007

    17. [17]

      Wan YanMa Jia-QiHong ChaoLi Mei-ChaoJin Li-QunHu Xin-QuanHu Bao-XiangMo Wei-MinSun NanShen Zhen-Lu . Direct synthesis of imines by 9-azabicyclo-[3, 3, 1]nonan-N-oxyl/KOHcatalyzed aerobic oxidative coupling of alcohols and amines. Chinese Chemical Letters, 2018, 29(8): 1269-1272. doi: 10.1016/j.cclet.2017.10.006

    18. [18]

      SUN QianWANG Jin-TingZHANG Li-MinYANG Mao-Ping . Photoinduced Electron and Hydrogen Transfer Reactions of Thioxanthone with Amines, Phenols and Alcohols. Acta Physico-Chimica Sinica, 2010, 26(09): 2481-2488. doi: 10.3866/PKU.WHXB20100925

    19. [19]

      Jian Hua DONG Da Hui LIU Kun Yuan QIU Xin De FANG . RADICAL POLYMERIZATION OF VINYL MONOMER INITIATED BY CERIC ION/TARTARIC ACID. Chinese Chemical Letters, 1994, 5(6): 523-526.

    20. [20]

      Lin Kun AN Xian Zhang BU Hai Qiang WU Xin Dong GUO Lin MA Lian Quan GU . The Reaction of Tanshinones with Amines. Chinese Chemical Letters, 2003, 14(6): 557-560.

Metrics
  • PDF Downloads(4)
  • Abstract views(103)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return