Citation: Feng Yadong, Liu Ying, Fu Qi, Zou Zhongai, Shen Jinhai, Cui Xiuling. Construction of diaminobenzoquinone imines via ferrocene-initiated radical reaction of benzoquinone with amines[J]. Chinese Chemical Letters, ;2020, 31(3): 733-735. doi: 10.1016/j.cclet.2019.09.026 shu

Construction of diaminobenzoquinone imines via ferrocene-initiated radical reaction of benzoquinone with amines

    * Corresponding authors at: College of Environment and Public Health, Xiamen Huaxia University, Xiamen 361024, China.
    E-mail addresses: fengyd@hxxy.edu.cn (Y. Feng), cuixl@hqu.edu.cn (X. Cui).
  • Received Date: 24 July 2019
    Revised Date: 9 September 2019
    Accepted Date: 12 September 2019
    Available Online: 12 September 2019

Figures(3)

  • A ferrocene-initiated radical reaction of benzoquinone with amines has been successfully developed for the direct access to diaminobenzoquinone imines in high yields, in which the commercially available and cheap ferrocene was employed as a radical initiator and TBHP was used as an oxidant. Moreover, this reaction could be achieved with low loading of ferrocene (0.5 mol%). This protocol is highly efficient with good substrate tolerance and provides a new approach for the construction of benzoquinone imines with potential pharmaceutical interest.
  • 加载中
    1. [1]

      (a) E. Prochazka, B.I. Escher, M.J. Plewa, F.D.L. Leusch, Chem. Res. Toxicol. 28 (2015) 2059-2068;
      (b) R. Mout, Z.D. Xu, A.K.H. Wolf, V.J. Davisson, G.K. Jarori, Malar. J.11 (2012) 54-54;
      (c) D. Tasdemir, R. Brun, V. Yardley, S.G. Franzblau, P. Ruedi, Chem. Biodiv. 3 (2006) 1230-1237;
      (d) L.F. Fieser, E.M. Chamberlin, J. Am. Chem. Soc. 70 (1948) 71-75;
      (e) B. Joy, S.N. Kumar, M.S. Soumya, et al., Phytomedicine 21 (2014) 1292-1297;
      (f)A.Cavalli, M.L.Bolognesi, S.Capsoni, etal., Angew.Chem.Int.Ed.46 (2007)3689-3692;
      (g) T.J. Monks, P. Hanzlik, G.M. Cohen, D. Ross, D.G. Graham, Toxicol. Appl. Pharmacol. 112 (1992) 2-16.

    2. [2]

      (a) J. Yu, H. Zhang, Q. Lu, et al., Chem. Ind. Eng. Progress 34 (2015) 1115-1121;
      (b) M.R. Halhalli, B. Sellergren, Polym. Chem. 6 (2015) 7320-7332;
      (c) M.A. Hanna, M.M. Girges, Acta Polym. 41 (1990) 354-360;
      (d) S. Rajappa, S.J. Shenoy, Tetrahedron 42 (1986) 5739-5746.

    3. [3]

      S. Rajappa, R. Sreenivasan, A.V. Rane, Tetrahedron Lett. 24 (1983) 3155-3158.  doi: 10.1016/S0040-4039(00)88121-6

    4. [4]

      V. Nair, C. Rajesh, R. Dhanya, A.U. Vinod, Tetrahedron Lett. 42 (2001) 2045-2046.  doi: 10.1016/S0040-4039(01)00072-7

    5. [5]

      V. Nair, R. Dhanya, S. Viji, Tetrahedron 61 (2005) 5843-5848.  doi: 10.1016/j.tet.2005.04.008

    6. [6]

      K.A. Parker, T.L. Mindt, Org. Lett. 4 (2002) 4265-4268.  doi: 10.1021/ol026849x

    7. [7]

      (a) Y. Park, Y. Kim, S. Chang, Chem. Rev. 117 (2017) 9247-9301;
      (b) J. Kim, S. Chang, Angew. Chem. Int. Ed. 53 (2014) 2203-2207;
      (c) T. Kang, Y. Kim, D. Lee, Z. Wang, S. Chang, J. Am. Chem. Soc.136 (2014) 4141-4144;
      (d) H. Hwang, J. Kim, J. Jeong, S. Chang, J. Am. Chem. Soc. 136 (2014) 10770-10776;
      (e) C. Pi, X. Cui, Y. Wu, J. Org. Chem. 80 (2015) 7333-7339;
      (f) M.E. Wei, L.H. Wang, Y.Y. Li, X. Cui, Chin. Chem. Lett. 26 (2015) 1336-1340;
      (g) X. Han, P. Lin, Q. Li, Chin. Chem. Lett. 30 (2019) 1495-1502;
      (h) S. Yuan, S. Wang, M. Zhao, et al., Chin. Chem. Lett. 31 (2020) 349-352;
      (i) Q. Huang, L. Zhu, D. Yi, X. Zhao, W. Wei, Chin. Chem. Lett. 31 (2020) 373-376;
      (j) X. Zhang, S. Dong, Q. Ding, X. Fan, G. Zhang, Chin.Chem. Lett. 30 (2019) 375-378;
      (k) L. Xie, S. Peng, L. Jiang, et al., Org. Chem. Front. 6 (2019) 167-171;
      (l) L. Xie, S. Peng, F. Liu, et al., ACS Sustainable Chem. Eng. 7 (2019) 7193-7199.

    8. [8]

      J.A. Jordan-Hore, C.C.C. Johansson, M. Gulias, E.M. Beck, M.J. Gaunt, J. Am. Chem. Soc. 130 (2008) 16184-16186.  doi: 10.1021/ja806543s

    9. [9]

      S.M. Paradine, M.C. White, J. Am. Chem. Soc. 134 (2012) 2036-2039.  doi: 10.1021/ja211600g

    10. [10]

      (a) Y. Feng, Y. Li, Y. Yu, L. Wang, X. Cui, RSC Adv. 8 (2018) 8450-8454;
      (b) Y. Feng, Z. Zhang, Q. Fu, et al., Chin. Chem. Lett. 31 (2020) 58-60.

    11. [11]

      (a) C. Liu, D. Liu, A. Lei, Acc. Chem. Res. 47 (2014) 3459-3470;
      (b) S.A. Girard, T. Knauber, C.J. Li, Angew. Chem. Int. Ed. 53 (2014) 74-100;
      (c) R. Braslau, M.O. Anderson, F. Rivera, et al., Tetrahedron 58 (2002) 5513-5523;
      (d) S. Bath, N.M. Laso, H. Lopez-Ruiz, B. Quiclet-Sire, S.Z. Zard, Chem. Commun. 34 (2003) 204-205;
      (e) J. Wang, C. Liu, J. Yuan, A. Lei, Angew. Chem. Int. Ed. 52 (2013) 2256-2259;
      (f) J. Xie, J. Yu, M. Rudolph, F. Rominger, A.S. Hashmi, Angew. Chem. Int. Ed. 55 (2016) 9416-9421;
      (g) C. Wang, J. Qin, X. Shen, et al., Angew. Chem. Int. Ed. 55 (2016) 685-688;
      (h) L.Y. Xie, S. Peng, F. Liu, et al., Org. Chem. Front. 5 (2018) 2604-2609;
      (i) L.Y. Xie, S. Peng, F. Liu, et al., Adv. Synth. Catal. 360 (2018) 4259-4264;
      (j) L. Xie, T. Fang, J. Tan, et al., Green Chem. 21 (2019) 3858-3863.

    12. [12]

      (a) D. Leifert, C.G. Daniliuc, A. Studer, Org. Lett. 15 (2013) 6286-6289;
      (b) S. Wertz, D. Leifert, A. Studer, Org. Lett. 15 (2013) 928-931.

    13. [13]

      Y. Feng, H. Zhang, Y. Yu, L. Yang, X. Cui, Eur. J. Org. Chem. 16 (2019) 2740-2744.

    14. [14]

      (a) L. Wang, D. Xiong, L. Jie, C. Yu, X. Cui, Chin. Chem. Lett. 29 (2018) 907-910;
      (b) L. Xu, T. Li, L. Wang, X. Cui, J. Org. Chem. 84 (2019) 560-567;
      (c) Z. Yang, L. Jie, Z. Yao, et al., Adv. Catal. Synth. 1 (2019) 214-258;
      (d) P. Chao, X. Yin, X. Cui, Y. Ma, Y. Wu, Org. Lett. 7 (2019) 2081-2084;
      (e) J. Ren, C. Pi, Y. Wu, X. Cui, Org. Lett. 11 (2019) 4067-4071; f) S. Huang, H. Li, X. Sun, et al., Org. Lett. 21 (2019) 5570-5574;
      (g) B. Wu, Z. Yang, H. Zhang, L. Wang, Cui X, Chem. Commun. 55 (2019) 4190-4193;
      (h) Z. Yang, Z. Song, L. Jie, L. Wang, X. Cui, Chem. Commun. 55 (2019) 6094-6097;
      (i) T. Yuan, C. Pi, C. You, et al., Chem. Commun. 55 (2019) 163-166;
      (k) T. Wan, S. Du, C. Pi, Y. Wang, R. Li, Y. Wu, X. Cui, ChemCatChem 11 (2019) 3791-3796;
      (l) S. Du, C. Pi, T. Wan, Y. Wu, X. Cui, Adv. Synth. Catal. 361 (2019) 1766-1770;
      (m) Z.H. Shen, C. Pi, X. Cui, Y. Wu, Chin. Chem. Lett. 30 (2019) 1374-1378.

  • 加载中
    1. [1]

      Jun ZhangZhiyao ZhengCan Zhu . Stereochemical editing: Catalytic racemization of secondary alcohols and amines. Chinese Chemical Letters, 2024, 35(5): 109160-. doi: 10.1016/j.cclet.2023.109160

    2. [2]

      Xinghao CaiChen MaYing KangYuqiang RenXue MengWei LuShiming FanShouxin Liu . Nickel-catalyzed C(sp2)–H alkynylation of free α-substituted benzylamines using a transient directing group. Chinese Chemical Letters, 2025, 36(10): 110901-. doi: 10.1016/j.cclet.2025.110901

    3. [3]

      Jian PengYue JiangShuangyu WuYanran ChengJingyu LiangYixin WangZhuo LiSijie Lin . A nonradical oxidation process initiated by Ti-peroxo complex showed high specificity toward the degradation of tetracycline antibiotics. Chinese Chemical Letters, 2024, 35(5): 108903-. doi: 10.1016/j.cclet.2023.108903

    4. [4]

      Xin LiJia-Min LuBo LiChen ZhaoBei-Bei YangLi Li . Chiroptical sensing for remote chiral amines via a C–H activation reaction. Chinese Chemical Letters, 2025, 36(5): 110310-. doi: 10.1016/j.cclet.2024.110310

    5. [5]

      Qi LiZi-Lu WangYun-He Xu . Copper-catalyzed 1,4-silylcyanation of 1,3-enynes: A silyl radical-initiated approach for synthesis of difunctionalized allenes. Chinese Chemical Letters, 2025, 36(3): 109991-. doi: 10.1016/j.cclet.2024.109991

    6. [6]

      Wen-Tao OuyangJun JiangYan-Fang JiangTing LiYuan-Yuan LiuHong-Tao JiLi-Juan OuWei-Min He . Sono-photocatalytic amination of quinoxalin-2(1H)-ones with aliphatic amines. Chinese Chemical Letters, 2024, 35(10): 110038-. doi: 10.1016/j.cclet.2024.110038

    7. [7]

      Xiuhua WangJianrong Steve Zhou . A dicationic nickel complex-catalyzed asymmetric synthesis of chiral benzylic amines: Evolution from reductive amination to borrowing hydrogen reaction. Chinese Chemical Letters, 2026, 37(2): 111148-. doi: 10.1016/j.cclet.2025.111148

    8. [8]

      Yuan ZhangShenghao GongA.R. Mahammed ShaheerRong CaoTianfu Liu . Plasmon-enhanced photocatalytic oxidative coupling of amines in the air using a delicate Ag nanowire@NH2-UiO-66 core-shell nanostructures. Chinese Chemical Letters, 2024, 35(4): 108587-. doi: 10.1016/j.cclet.2023.108587

    9. [9]

      Nianhua LuoJiayi JiangMuhammad SulemanZhaowen LiuShuping HuangWei XiaoJie WuJiapian Huang . Advances in radical Smiles rearrangement. Chinese Chemical Letters, 2026, 37(2): 111556-. doi: 10.1016/j.cclet.2025.111556

    10. [10]

      Min-Hang ZhouJun JiangWei-Min He . EDA-complexes-enabled photochemical synthesis of α-amino acids with imines and tetrabutylammonium oxalate. Chinese Chemical Letters, 2025, 36(1): 110446-. doi: 10.1016/j.cclet.2024.110446

    11. [11]

      Jun LiuZhaoyu FengRenming PanXiaolong YuMeijuan ZhouGang ZhaoHongyu Wang . Enantioselective regulation to coronal polyheterocyclic compounds via phosphonium salt-catalyzed cycloadditions of azomethine imines with γ-butenolides. Chinese Chemical Letters, 2025, 36(8): 110647-. doi: 10.1016/j.cclet.2024.110647

    12. [12]

      Zhengzhong ZhuShaojun HuZhi LiuLipeng ZhouChongbin TianQingfu Sun . A cationic radical lanthanide organic tetrahedron with remarkable coordination enhanced radical stability. Chinese Chemical Letters, 2025, 36(2): 109641-. doi: 10.1016/j.cclet.2024.109641

    13. [13]

      Qiang FangYingbo LuJianying HuangCheng ZhangJing WuShijun Li . An electrochemical immunosensor based on an antibody-ferrocene-functionalized covalent organic framework. Chinese Chemical Letters, 2026, 37(2): 111218-. doi: 10.1016/j.cclet.2025.111218

    14. [14]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    15. [15]

      Zonglin LiShihua ZouZining WangGeorgeta PostoleLiang HuHongying Zhao . Machine learning in electrochemical oxidation process: A mini-review. Chinese Chemical Letters, 2025, 36(8): 110526-. doi: 10.1016/j.cclet.2024.110526

    16. [16]

      Lina XieXiaohe ZhangXiaobo WangZhen ZhangTianqi NieJun WuXiaojun Xu . Multifunctional GelMA hydrogel doped with spermidine-ferrocene polymeric nanoparticles for accelerative diabetic wound healing. Chinese Chemical Letters, 2025, 36(11): 110848-. doi: 10.1016/j.cclet.2025.110848

    17. [17]

      Jindian DuanXiaojuan DingPui Ying ChoyBinyan XuLuchao LiHong QinZheng FangFuk Yee KwongKai Guo . Oxidative spirolactonisation for modular access of γ-spirolactones via a radical tandem annulation pathway. Chinese Chemical Letters, 2024, 35(10): 109565-. doi: 10.1016/j.cclet.2024.109565

    18. [18]

      Xiao-Bo LiuRen-Ming LiuXiao-Di BaoHua-Jian XuQi ZhangYu-Feng Liang . Nickel-catalyzed reductive formylation of aryl halides via formyl radical. Chinese Chemical Letters, 2024, 35(12): 109783-. doi: 10.1016/j.cclet.2024.109783

    19. [19]

      Hong-Qiang DongShang-Bo YuShu-Meng WangJia-Hao ZhaoXu-Guan BaiShi-Xing LeiZhen-Nan TianJia TianKang-Da ZhangLu WangZhan-Ting LiShigui Chen . Construction of radical halogen-bonded organic frameworks with enhanced magnetism and conductivity. Chinese Chemical Letters, 2025, 36(8): 110730-. doi: 10.1016/j.cclet.2024.110730

    20. [20]

      Hui-Xian JiangZhi-Tao LiuPei XuXu Zhu . Synthetic application of oxalate salts for visible-light-induced radical transformations. Chinese Chemical Letters, 2025, 36(12): 111224-. doi: 10.1016/j.cclet.2025.111224

Metrics
  • PDF Downloads(8)
  • Abstract views(1530)
  • HTML views(44)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return