Citation: Qian Xiu, Deng Siyu, Chen Xiang, Gao Qiang, Hou Yun-Long, Wang Aiwu, Chen Lizhuang. A highly stable, luminescent and layered zinc(Ⅱ)-MOF: Iron(Ⅲ)/copper(Ⅱ) dual sensing and guest-assisted exfoliation[J]. Chinese Chemical Letters, ;2020, 31(9): 2211-2214. doi: 10.1016/j.cclet.2019.09.024 shu

A highly stable, luminescent and layered zinc(Ⅱ)-MOF: Iron(Ⅲ)/copper(Ⅱ) dual sensing and guest-assisted exfoliation

    * Corresponding authors at: School of Environmental and Chemical Engineering Jiangsu University of Science and Technology Zhenjiang 212003 China.
    E-mail addresses: ylhou8@just.edu.cn(Y.-L. Hou) clz1977@sina.com (L. Chen).
  • Received Date: 6 July 2019
    Revised Date: 4 September 2019
    Accepted Date: 4 September 2019
    Available Online: 15 September 2020

Figures(3)

  • A highly stable and luminescent metal-organic framework (LMOF) with layered structure, namely, C6H4N5OZn (1) has been successfully achieved and fully characterized by single crystal X-ray diffraction, powder X-ray diffractions, fluorescence titration and thermogravimetry. This blue-light emitting compound 1 exhibit outstanding stability and can detect Fe3+ and Cu2+ in water specifically, presenting potential application in the field of fluorescent probe technology. Fluorescence titration experiments indicate that the detection of Fe3+ ions by 1 is more significant than that of Cu2+ ions in terms of Ksv value. Furthermore, guest-assisted exfoliation of layered MOF 1 is efficiently carried out through ether O—H hydrogen bond or ππ interactions between the layered host structure and intercalated guest molecules (4, 4'-oxybisbenzoic acid and triphenylamine). Tyndal scattering was observed in the suspensions of obtained MOF nanosheets. This study shows that the compound 1 with unique metal ion sensing properties can be applied as a probe material in water pollution treatment field, but also opens up the opportunity for synthesizing luminescent MONs through the "bottom-up" guest intercalation methodology.
  • 加载中
    1. [1]

      Y. Cui, Y. Yue, G. Qian, B. Chen, Chem. Rev. 112(2012) 1126-1162.  doi: 10.1021/cr200101d

    2. [2]

      Y. Zhang, S. Yuan, G. Day, et al., Coord. Chem. Rev. 354(2018) 28-45.  doi: 10.1016/j.ccr.2017.06.007

    3. [3]

      T. Islamoglu, S. Goswami, Z. Li, et al., Acc. Chem. Res. 50(2017) 805-813.  doi: 10.1021/acs.accounts.6b00577

    4. [4]

      Q. Zhang, C. Zhang, L. Cao, et al., J. Am. Chem. Soc. 138(2016) 5308-5315.  doi: 10.1021/jacs.6b01345

    5. [5]

      S.Z. Zhan, M. Li, S.W. Ng, D. Li, Chem. Eur. J. 19(2013) 10217-10225.  doi: 10.1002/chem.201204632

    6. [6]

      G. Liu, D.Q. Feng, X. Mu, et al., J. Mater. Chem. B 1(2013) 2128-2131.  doi: 10.1039/c3tb20208a

    7. [7]

      A. Wang, Y.L. Hou, F. Kang, et al., J. Mater. Chem. 7(2012) 2207-2211.

    8. [8]

      S. Pramanik, C. Zheng, X. Zhang, T.J. Emge, J. Li, J. Am. Chem. Soc. 133(2012) 4153-4155.

    9. [9]

      Z. Hu, K. Tan, W.P. Lustig, et al., Chem. Sci. 5(2014) 4873-4877.  doi: 10.1039/C4SC02157F

    10. [10]

      S.M. Zhang, Z. Chang, T.L. Hu, X.H. Bu, Inorg. Chem. 49(2010) 11581-11586.  doi: 10.1021/ic1017467

    11. [11]

      Z. Chang, D.H. Yang, J. Xu, T.L. Hu, X.H. Bu, Adv. Mater. 27(2015) 5432-5441.  doi: 10.1002/adma.201501523

    12. [12]

      J. Liu, H.B. Zhang, Y.X. Tan, et al., Inorg. Chem. 53(2014) 1500-1506.  doi: 10.1021/ic402467g

    13. [13]

      B. Gole, A.K. Bar, P.S. Mukherjee, Chem. Commun. (Camb.) 47(2011) 12137-12139.  doi: 10.1039/c1cc15594f

    14. [14]

      S.S. Nagarkar, B. Joarder, A.K. Chaudhari, S. Mukherjee, S.K. Ghosh, Angew. Chem. Int. Ed. 125(2013) 2953-2957.  doi: 10.1002/ange.201208885

    15. [15]

      S.S. Nagarkar, A.V. Desai, S.K. Ghosh, Chem. Commun. (Camb.) 50(2014) 8915-8918.  doi: 10.1039/C4CC03053B

    16. [16]

      Y. Xiao, Y. Cui, Q. Zheng, S. Xiang, G. Qian, Chem. Commun. (Camb.) 30(2010) 5503-5505.

    17. [17]

      J. Geng, Y. Liu, J. Li, et al., Sensor. Actuat. B -Chem. 222(2016) 612-617.  doi: 10.1016/j.snb.2015.08.076

    18. [18]

      D.K. Singha, P. Mahata, Inorg. Chem. 13(2015) 6373-6375.

    19. [19]

      M.D. Allendorf, C.A. Bauer, R.K. Bhaktaa, R.J.T. Houk, Chem. Soc. Rev. 38(2009) 1330-1352.  doi: 10.1039/b802352m

    20. [20]

      Z. Hu, B.J. Deibert, J. Li, Chem. Soc. Rev. 43(2014) 5815-5840.  doi: 10.1039/C4CS00010B

    21. [21]

      H.J. Kalinowski, J.L. Fabris, W.J. Bock, 24th International Conference on Optical Fibre Sensors, 2015.

    22. [22]

      X. Zhao, D. Liu, H. Huang, C. Zhong, Microporous Mesoporous Mater. 224(2016) 149-154.  doi: 10.1016/j.micromeso.2015.11.042

    23. [23]

      Y.J. Ding, Y.P. Chen, X.L. Zhang, et al., J. Am. Chem. Soc. 27(2017) 9136-9139.

    24. [24]

      M. Zhao, Y. Huang, Y.W. Peng, et al., Chem. Soc. Rev. 16(2018) 6001-6046.

    25. [25]

      D.J. Ashworth, J.A. Foster, J. Mater. Chem. A Mater. Energy Sustain. 6(2018) 16292-16307.  doi: 10.1039/C8TA03159B

    26. [26]

      W.W. Zhao, J.L. Peng, W.K. Wang, et al., Coord. Chem. Rev. 377(2018) 44-63.  doi: 10.1016/j.ccr.2018.08.023

    27. [27]

      M. Ko, L. Mendecki, K.A. Mirica, Chem. Commun. (Camb.) 54(2018) 7873-7891.  doi: 10.1039/C8CC02871K

    28. [28]

      Y.Z. Fu, Q. Han, Q. Chen, et al., Chem. Commun. (Camb.) 48(2012) 2322-2324.  doi: 10.1039/c2cc17301h

    29. [29]

      J.G. Li, H.C. Sun, L. Lv, et al., ACS Appl. Mater. Inter. 11(2019) 8106-8114.  doi: 10.1021/acsami.8b22133

    30. [30]

      L. Lv, Z.X. Yang, K. Chen, C.D. Wang, Y.J. Xiong, Adv. Energy Mater. (2019) 1803358.

    31. [31]

      L.Z. Chen, F.M. Wang, X.X. Cao, Chin. J. Struct. Chem. 31(2012) 1417-1422.

    32. [32]

      L.Z. Chen, X.X. Cao, F.M. Wang, G.L. Xie, Inorg. Chem. 28(2012) 1291-1297.

    33. [33]

      L.Z. Chen, Q. Ji, Y.Y. Dan, Chin. J. Struct. Chem. 35(2016) 1728-1735.

    34. [34]

      F.M. Wang, Z.Y. Zhou, W. Liu, et al., Dalton Trans. 46(2017) 956-961.  doi: 10.1039/C6DT03883B

    35. [35]

      L.Z. Chen, F.M. Wang, S. Hong, J. Coord. Chem. 65(2012) 439-452.  doi: 10.1080/00958972.2012.654786

    36. [36]

      P. Wang, J. Fu, K. Yao, et al., Sensor. Actuat. B -Chem. 273(2018) 1070-1076.  doi: 10.1016/j.snb.2018.07.028

    37. [37]

      A.J. Howarth, Y. Liu, P. Li, et al., Nat. Rev. Mater. 1(2016) 15018.  doi: 10.1038/natrevmats.2015.18

    38. [38]

      C.H. Chen, X.S. Wang, L. Li, Y.B. Huang, R. Cao, Dalton Trans. 47(2018) 3452-3458.  doi: 10.1039/C8DT00088C

    39. [39]

      X.X. Jia, R.X. Yao, F.Q. Zhang, X.M. Zhang, Inorg. Chem. 56(2017) 2690.  doi: 10.1021/acs.inorgchem.6b02872

    40. [40]

      C. Xing, Z. Shi, M. Yu, S. Wang, Polymer 49(2018) 2698-2703.

    41. [41]

      Q. Jin, L.Z. Chen, Chin. J. Inorg. Chem. 33(2017) 8-15.

    42. [42]

      R. Kagit, M. Yildirim, O. Ozay, et al., Inorg. Chem. 53(2014) 2144-2151.  doi: 10.1021/ic402783x

    43. [43]

      B.L. Sui, S. Tang, T.H. Liu, et al., ACS Appl. Mater. Interfaces 6(2014) 18408-18412.  doi: 10.1021/am506262u

    44. [44]

      X.Y. Mu, L. Qi, J. Qiao, H.M. Ma, Anal. Methods 6(2014) 6445-6451.  doi: 10.1039/C4AY01137F

    45. [45]

      A. Ananthanarayanan, X.W. Wang, P. Routh, et al., Adv. Funct. Mater. 24(2014) 3021-3026.  doi: 10.1002/adfm.201303441

    46. [46]

      X.Y. Dong, R. Wang, J.Z. Wang, et al., J. Mater. Chem. A:Mater. Energy Sustain. 3(2015) 641-647.  doi: 10.1039/C4TA04421E

    47. [47]

      Y.T. Liang, G.P. Yang, B. Liu, et al., Dalton Trans. 44(2015) 13325-13330.  doi: 10.1039/C5DT01421B

    48. [48]

      H. Xu, H.C. Hu, C.S. Cao, B. Zhao, Inorg. Chem. 54(2015) 4585-4587.  doi: 10.1021/acs.inorgchem.5b00113

  • 加载中
    1. [1]

      Ma ZhanshengLiu ZanCheng Zhilin . Scalable exfoliation for few-layered hexagonal boron nitride nanosheets (BNNSs) by microwave-assisted expansion and liquid nitrogen intercalation. Chinese Chemical Letters, 2020, 31(7): 1936-1940. doi: 10.1016/j.cclet.2020.01.019

    2. [2]

      Zhou HangWang YuweiWang FuqiangDeng HaoSong YongchenLi ChangpingLing Zheng . Water permeability in MXene membranes: Process matters. Chinese Chemical Letters, 2020, 31(6): 1665-1669. doi: 10.1016/j.cclet.2019.10.037

    3. [3]

      Hong LIANG Xing Can SHEN Fang LI Zhi Liang JIANG . The Photochemical Study of HSA and BSA with Resonance Light-Scattering and Fluorescence Spectra. Chinese Chemical Letters, 2000, 11(3): 251-254.

    4. [4]

      WANG Peng-FeWU Xiao-ShuoLU Peng-Peng . A Crystalline Pb(Ⅱ) Coordination Polymer: Synthesis, Crystal Structure, Exfoliation and Luminescent Property. Chinese Journal of Inorganic Chemistry, 2016, 32(6): 1071-1077. doi: 10.11862/CJIC.2016.137

    5. [5]

      Li Xin XU Ai Ru LIU . COULOMETRIC TITRATION OF MYLIS. Chinese Chemical Letters, 1991, 2(1): 29-30.

    6. [6]

      Jian Bin ZHENG Shu Ping BI Hong GAO . DIFFERENTIAL RECIPROCAL OSCILLOGRAPHIC CHRONOPOTENTIOMETIC TITRATION. Chinese Chemical Letters, 1992, 3(5): 389-392.

    7. [7]

      Shui Hua TANG Li Zhen GAO Bao Chun LIU He LI Bo Lan ZHANG Liang Fu ZHANG Zuo Long YU . Determination the Hydrogen Stored in Carbon Nanotubes by NO Titration Method. Chinese Chemical Letters, 2001, 12(11): 1015-1018.

    8. [8]

      Zhang ZijieMorishita KiyoshiDavid Lin Wei TingJimmy Huang Po-JungLiu Juewen . Nucleotide coordination with 14 lanthanides studied by isothermal titration calorimetry. Chinese Chemical Letters, 2018, 29(1): 151-156. doi: 10.1016/j.cclet.2017.06.014

    9. [9]

      Jun Ping Xiao Qing Xiang Zhou Xiao Ke Tian Hua Hua Bai Xian Fa Su . Determination of aniline in environmental water samples by alternating-current oscillopolarographic titration. Chinese Chemical Letters, 2007, 18(6): 730-733. doi: 10.1016/j.cclet.2007.04.030

    10. [10]

      Hong Ping GUO Cheng Zhi HUANG Jian LING . Resonance Light Scattering Imaging Determination of Heparin. Chinese Chemical Letters, 2006, 17(1): 53-56.

    11. [11]

      Zhiteng ZhangLisa PfefferleGary L. Haller . Comparing characterization of functionalized multi-walled carbon nanotubes by potentiometric proton titration, NEXAFS, and XPS. Chinese Journal of Catalysis, 2014, 35(6): 856-863. doi: 10.1016/S1872-2067(14)60123-6

    12. [12]

      Xiu-Ming LiuDong-Qin HeKuan-Jun Fang . Adsorption of cationic copolymer nanoparticles onto bamboo fiber surfaces measured by conductometric titration. Chinese Chemical Letters, 2015, 26(9): 1174-1178. doi: 10.1016/j.cclet.2015.05.006

    13. [13]

      . Simple and cost-effective determination of ciprofloxacin hydrochloride by electrical micro-titration. Chinese Chemical Letters, 2017, 28(7): 1406-1412. doi: 10.1016/j.cclet.2017.03.019

    14. [14]

      Guang Han LU Chuan Yin LIU Hong Yan ZHAO Wei LIU Li Ping JIANG Ling Yan JIANG . Determination of Surface pKa of Pure Mercaptoacetic Acid and 2-Mercaptobenzothiazole Mixed Monolayers by Impedance Titration. Chinese Chemical Letters, 2004, 15(7): 827-830.

    15. [15]

      Guang Yue BAI Hai Ke YAN . Effect of Spacers on CMCs and Micelle-forming Enthalpies of Gemini Surfactants by Titration Microcalorimetry. Chinese Chemical Letters, 2000, 11(12): 1095-1096.

    16. [16]

      Gang XU Ping WEI Yu Cheng XIE Xing Dong YU . QUANTITATIVE ANALYSIS OF VERY WEAK ACID AND BASE BY pH-FIXED TITRATION METHOD. Chinese Chemical Letters, 1990, 1(1): 81-84.

    17. [17]

      Xin Qiu Li Chuan Tang Chao Qing Dong Ji Cun Ren . Characterization of gold nanoparticle bioconjugation by resonance light scattering correlation spectroscopy. Chinese Chemical Letters, 2010, 21(10): 1227-1230. doi: 10.1016/j.cclet.2010.05.007

    18. [18]

      Li Mei QIU Fen LIU Liang Zhong ZHAO . Effect of Low Energy Electron Exposure on Ion Scattering Spectroscopy. Chinese Chemical Letters, 2003, 14(10): 1058-1061.

    19. [19]

      Ju ZUO Jian Feng HUANG Ying Li AN Fang Xing LI Chang Ying ZHU Li LIU Zhi Guang ZHANG Bing Lin HE . Dynamic Behavior and Mass Transport in Polyacrylic Acid Gel by Dynamic Light Scattering. Chinese Chemical Letters, 2002, 13(5): 448-451.

    20. [20]

      Ren Ao GU Zhang Fei HE Xiao Kun HU Ban Dong DING . EFFECT OF SOLVENT ON SURFACE ENHANCED RAMAN SCATTERING SPECTRA OF COLLOIDAL SILVER. Chinese Chemical Letters, 1992, 3(2): 127-128.

Metrics
  • PDF Downloads(4)
  • Abstract views(42)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return