Citation: Wu Zhen, Feng Xue-Xin, Wang Qing-Dong, Yun Jin-Jin, Rao Weidong, Yang Jin-Ming, Shen Zhi-Liang. Bismuth trichloride-catalyzed oxy-Michael addition of water and alcohol to α, β-unsaturated ketones[J]. Chinese Chemical Letters, ;2020, 31(5): 1297-1300. doi: 10.1016/j.cclet.2019.09.017 shu

Bismuth trichloride-catalyzed oxy-Michael addition of water and alcohol to α, β-unsaturated ketones

    * Corresponding authors at: School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
    E-mail addresses: yangjm@yctu.edu.cn (J.-M. Yang), ias_zlshen@njtech.edu.cn (Z.-L. Shen).
  • Received Date: 22 June 2019
    Revised Date: 27 August 2019
    Accepted Date: 9 September 2019
    Available Online: 11 September 2019

  • An efficient method was developed for the conjugate addition of water to various α, β-unsaturated ketones by using bismuth(Ⅲ) chloride as a catalyst. The reactions proceeded smoothly in the presence of a catalytic amount of BiCl3 (20 mol%) in aqueous media to furnish a variety of synthetically useful β-hydroxyl ketones in moderate to good yields. Apart from water molecule, various alcohols could also be employed as nucleophiles to react with α, β-unsaturated ketones, leading to β-alkoxyl ketones in modest to high yields. In addition, the mild reaction conditions also entailed the conjugate addition reactions to proceed with the tolerance to a range of functional groups.
  • 加载中
    1. [1]

      (a) I.Paterson, D.Y.K.Chen, M.J.Coster, et al., Angew.Chem.Int.Ed.40 (2001)4055-4060;
      (b) M.A.Calter, W.Liao, J.Am.Chem.Soc.124 (2002)13127-13129;
      (c) K.C.Nicolaou, A.Ritzén, K.Namoto, Chem.Commun.(2001)1523-1535.

    2. [2]

      (a) B.Schetter, R.Mahrwald, Angew.Chem.Int.Ed.45 (2006)7506-7525;
      (b) R.Mahrwald, Modern Aldol Reactions, Wiley-VCH, Weinheim, 2004;
      (c) B.List, R.A.Lerner, C.F.Barbas, J.Am.Chem.Soc.122 (2000)2395-2396;
      (d) P.Ryberg, O.Matsson, J.Am.Chem.Soc.123 (2001)2712-2718;
      (e) W.Notz, B.List, J.Am.Chem.Soc.122 (2000)7386-7387;
      (f) Z.L.Shen, S.J.Ji, T.P.Loh, Tetrahedron Lett.46 (2005)507-508.

    3. [3]

      (a) E.J.Corey, F.Y.Zhang, Org.Lett.1 (1999)1287-1290;
      (b) S.Kobayashi, P.Xu, T.Endo, M.Ueno, T.Kitanosono, Angew.Chem.Int.Ed.51 (2012)12763-12766;
      (c) O.Lifchits, M.Mahlau, C.M.Reisinger, et al., J.Am.Chem.Soc.135 (2013)6677-6693.

    4. [4]

      (a) J.Jin, U.Hanefeld, Chem.Commun.47 (2011)2502-2510;
      (b) V.Reschab, U.Hanefeld, Catal.Sci.Technol.5 (2015)1385-1399.

    5. [5]

      I.C.Stewart, R.G.Bergman, F.D.Toste, J.Am.Chem.Soc.125 (2003)8696-8697.

    6. [6]

      (a) A.J.Boersma, D.Coquiere, D.Geerdink, et al., Nat.Chem.2 (2010)991-995;
      (b) J.Bos, A.Garcia-Herraiz, G.Roelfes, Chem.Sci.4 (2013)3578-3582.

    7. [7]

      (a) V.Resch, C.Seidler, B.S.Chen, I.Degeling, U.Hanefeld, Eur.J.Org.Chem.(2013)7697-7704;
      (b) B.S.Chen, V.Resch, L.G.Otten, U.Hanefeld, Chem.-Eur.J.21 (2015)3020-3030;
      (c) J.Jin, P.C.Oskam, S.K.Karmee, A.J.J.Straathof, U.Hanefeld, Chem.Commun.46 (2010)8588-8590.

    8. [8]

      X.Wang, D.Sui, M.Huang, Y.Jiang, Polym.Adv.Technol.17 (2006)163-167.

    9. [9]

      (a) J.J.Yun, M.L.Zhi, W.X.Shi, et al., Adv.Synth.Catal.360 (2018)2632-2637;
      (b) J.J.Yun, X.Y.Liu, W.Deng, et al., J.Org.Chem.83 (2018)10898-10907.

    10. [10]

      (a) T.Ollevier, Bismuth-Mediated Organic Reactions, Springer, Berlin, Heidelberg, 2012;
      (b) T.Ollevier, Org.Biomol.Chem.11 (2013)2740-2755;
      (c) P.A.Evans, J.Cui, S.J.Gharpure, R.J.Hinkle, J.Am.Chem.Soc.125 (2003)11456-11457;
      (d) S.Shimada, O.Yamazaki, T.Tanaka, et al., Angew.Chem.Int.Ed.42 (2003)1845-1848;
      (e) T.Huang, Y.Meng, S.Venkatraman, D.Wang, C.J.Li, J.Am.Chem.Soc.123 (2001)7451-7452;
      (f) P.K.Koech, M.J.Krische, J.Am.Chem.Soc.126 (2004)5350-5351;
      (g) Y.Matano, Chem.Commun.(2000)2233-2234;
      (h) T.D.Blümke, Y.H.Chen, Z.Peng, P.Knochel, Nat.Chem.2 (2010)313-318;
      (i) Y.Liu, Y.Lu, M.Prashad, O.Repic, T.J.Blacklock, Adv.Synth.Catal.347 (2005)217-219;
      (j) X.Y.Liu, B.Q.Cheng, Y.C.Guo, et al., Org.Chem.Front.6 (2019)1581-1586;
      (k) V.N.Mahire, P.P.Mahulikar, Chin.Chem.Lett.26 (2015)983-987;
      (l) D.Hu, L.Wang, F.Wang, J.Wang, Chin.Chem.Lett.29 (2018)1413-1416;
      (m) H.J.Li, D.H.Luo, Q.X.Wu, et al., Chin.Chem.Lett.25 (2014)1235-1239.

    11. [11]

      (a) C.J.Li, Chem.Rev.105 (2005)3095-3166;
      (b) C.J.Li, Chem.Rev.93 (1993)2023-2035;
      (c) C.J.Li, L.Chen, Chem.Soc.Rev.35 (2006)68-82;
      (d) D.Dallinger, C.O.Kappe, Chem.Rev.107 (2007)2563-2591;
      (e) S.Kobayashi, A.K.Manabe, Acc.Chem.Res.35 (2002)209-217;
      (f) U.M.Lindstrom, Chem.Rev.102 (2002)2751-2772;
      (g) C.J.Li, Acc.Chem.Res.35 (2002)533-538;
      (h) C.I.Herrerías, X.Q.Yao, Z.P.Li, C.J.Li, Chem.Rev.107 (2007)2546-2562;
      (i) C.J.Li, Acc.Chem.Res.43 (2010)581-590;
      (j) M.O.Simona, C.J.Li, Chem.Soc.Rev.41 (2012)1415-1427;
      (k) T.P.Loh, G.L.Chua, Chem.Commun.(2006)2739-2749.

    12. [12]

      (a) R.Zhang, Z.Y.Gu, S.Y.Wang, S.J.Ji, Org.Lett.20 (2018)5510-5514;
      (b) B.B.Liu, X.Q.Chu, H.Liu, et al., J.Org.Chem.82 (2017)10174-10180;
      (c) X.Q.Chu, X.P.Xu, S.J.Ji, Chem.-Eur.J.22 (2016)14181-14185;
      (d) J.Xiao, H.Wen, L.Wang, et al., Green.Chem.18 (2016)1032-1037;
      (e) S.Zhu, C.Q.Chen, M.Y.Xiao, et al., Green.Chem.19 (2017)5653-5658;
      (f) P.Z.Xie, J.Y.Wang, Y.N.Liu, et al., Nat.Commun.9 (2018)1321;
      (g) L.Y.Xie, S.Peng, F.Liu, et al., ACS Sustainable Chem.Eng.7 (2019)7193-7199;
      (h) L.Y.Xie, Y.Duan, L.H.Lu, et al., ACS Sustainable Chem.Eng.5 (2017)10407-10412;
      (i) L.Y.Xie, S.Peng, J.X.Tan, et al., ACS Sustainable Chem.Eng.6 (2018)16976-16981;
      (j) L.Y.Xie, Y.J.Li, J.Qu, et al., Green Chem.19 (2017)5642-5646;
      (k) C.Wu, H.J.Xiao, S.W.Wang, et al., ACS Sustainable Chem.Eng.7 (2019)2169-2175;
      (l) L.H.Lu, Z.Wang, W.Xia, et al., Chin.Chem.Lett.30 (2019)1237-1240;
      (m) Y.L.Lai, J.M.Huang, Org.Lett.19 (2017)2022-2025;
      (n) W.B.Wu, J.M.Huang, Org.Lett.14 (2012)5832-5835;
      (o) J.M.Huang, Z.Q.Lin, D.S.Chen, Org.Lett.14 (2012)22-25;
      (p) J.M.Huang, H.R.Ren, Chem.Commun.46 (2010)2286-2288;
      (q) X.Liu, S.B.Zhang, H.Zhu, Z.B.Dong, J.Org.Chem.83 (2018)11703-11711;
      (r) S.B.Zhang, X.Liu, M.Y.Gao, Z.B.Dong, J.Org.Chem.83 (2018)14933-14941;
      (s) Z.Chen, X.X.Shi, D.Q.Ge, et al., Chin.Chem.Lett.28 (2017)231-234;
      (t) Q.Q.Xuan, Y.H.Wei, Q.L.Song, Chin.Chem.Lett.28 (2017)1163-1166;
      (u) Y.Huo, P.Shen, W.Duan, et al., Chin.Chem.Lett.29 (2018)1359-1362;
      (v) H.Zhang, M.Han, C.Yang, L.Yu, Q.Xu, Chin.Chem.Lett.30 (2019)263-265;
      (w) H.Xu, Wang Q, Chin.Chem.Lett.30 (2019)337-339;
      (x) J.Gao, Z.G.Ren, J.P.Lang, Chin.Chem.Lett.28 (2017)1087-1092;
      (y) H.Wang, Y.Pan, Q.Tang, W.Zou, H.Shao, Chin.Chem.Lett.29 (2018)73-75;
      (z) W.H.Bao, M.He, J.T.Wang, et al., J.Org.Chem.84 (2019)6065-6071;
      (a.) Y.L.Zhan, Y.B.Shen, S.P.Li, B.H.Yue, X.C.Zhou, Chin.Chem.Lett.28 (2017)1353-1357;
      (b.) Q.Sun, L.Liu, Y.Yang, Z.Zha, Z.Wang, Chin.Chem.Lett.30 (2019)1379-1382;
      (c.) K.J.Liu, S.Jiang, L.H.Lu, et al., Green Chem 19 (2017)1983-1989.

    13. [13]

      (a) Z.L.Shen, T.P.Loh, Org.Lett.9 (2007)5413-5416;
      (b) Z.L.Shen, H.L.Cheong, T.P.Loh, Chem.-Eur.J.14 (2008)1875-1880;
      (c) Z.L.Shen, Y.L.Yeo, T.P.Loh, J.Org.Chem.73 (2008)3922-3924;
      (d) Y.S.Yang, Z.L.Shen, T.P.Loh, Org.Lett.11 (2009)1209-1212;
      (e) Y.S.Yang, Z.L.Shen, T.P.Loh, Org.Lett.11 (2009)2213-2215;
      (f) Z.L.Shen, H.L.Cheong, T.P.Loh, Tetrahedron Lett.50 (2009)1051-1054;
      (g) Z.L.Shen, S.J.Ji, T.P.Loh, Tetrahedron 64 (2008)8159-8163;
      (h) Z.Wu, X.X.Feng, Q.D.Wang, et al., Chin.Chem.Lett.31 (2020)391-395;
      (i) B.Q.Cheng, S.W.Zhao, X.D.Song, et al., J.Org.Chem.84 (2019)5348-5356;
      (j) Z.L.Shen, K.K.K.Goh, H.L.Cheong, et al., J.Am.Chem.Soc.132 (2010)15852-15855;
      (k) L.Shen, K.Zhao, K.Doitomi, et al., J.Am.Chem.Soc.139 (2017)13570-13578.

    14. [14]

      (a) C.F.Nising, S.Bräse, Chem.Soc.Rev.37 (2008)1218-1228;
      (b) M.M.Heravi, P.Hajiabbasi, Mol.Diversity 18 (2014)411-439.

  • 加载中
    1. [1]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    2. [2]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    3. [3]

      Xu HuangKai-Yin WuChao SuLei YangBei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720

    4. [4]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    5. [5]

      Kun Tang Yu-Wu Zhong . Water reduction by an organic single-chromophore photocatalyst. Chinese Journal of Structural Chemistry, 2024, 43(8): 100376-100376. doi: 10.1016/j.cjsc.2024.100376

    6. [6]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    7. [7]

      Yong-Fang Shi Sheng-Hua Zhou Zuju Ma Xin-Tao Wu Hua Lin Qi-Long Zhu . From [Ba3S][GeS4] to [Ba3CO3][MS4] (M = Ge, Sn): Enhancing optical anisotropy in IR birefringent crystals via functional group implantation. Chinese Journal of Structural Chemistry, 2025, 44(1): 100455-100455. doi: 10.1016/j.cjsc.2024.100455

    8. [8]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    9. [9]

      Yang Yang Jing-Li Luo Xian-Zhu Fu . Water-oxidation intermediates enabling electrochemical propylene epoxidation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100269-100269. doi: 10.1016/j.cjsc.2024.100269

    10. [10]

      Jinjie LuQikai LiuYuting ZhangYi ZhouYanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406

    11. [11]

      Wenhao ChenJian DuHanbin ZhangHancheng WangKaicheng XuZhujun GaoJiaming TongJin WangJunjun XueTing ZhiLonglu Wang . Surface treatment of GaN nanowires for enhanced photoelectrochemical water-splitting. Chinese Chemical Letters, 2024, 35(9): 109168-. doi: 10.1016/j.cclet.2023.109168

    12. [12]

      Shuyuan Pan Zehui Yang Fang Luo . Ni-based electrocatalysts for urea assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(8): 100373-100373. doi: 10.1016/j.cjsc.2024.100373

    13. [13]

      Rui Liu Jinbo Pang Weijia Zhou . Monolayer water shepherding supertight MXene/graphene composite films. Chinese Journal of Structural Chemistry, 2024, 43(10): 100329-100329. doi: 10.1016/j.cjsc.2024.100329

    14. [14]

      Xian YanHuawei XieGao WuFang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279

    15. [15]

      Lingyun ShenShenxiang YinQingshu ZhengZheming SunWei WangTao Tu . A rechargeable and portable hydrogen storage system grounded on soda water. Chinese Chemical Letters, 2025, 36(3): 110580-. doi: 10.1016/j.cclet.2024.110580

    16. [16]

      Kun WangJiaxuan QiuZefei WuYang LiuYongqi LiuXiangpeng ChenBao ZangJianmei ChenYunchao LeiLonglu WangQiang Zhao . Wafer-level GaN-based nanowires photocatalyst for water splitting. Chinese Chemical Letters, 2025, 36(3): 109993-. doi: 10.1016/j.cclet.2024.109993

    17. [17]

      Zhiqiang WangYajie GaoTianjun WangWei ChenZefeng RenXueming YangChuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602

    18. [18]

      Xiaoyu Zhang Xin Yu . Solar-powered heterogeneous water disinfection nano-system. Chinese Journal of Structural Chemistry, 2025, 44(3): 100439-100439. doi: 10.1016/j.cjsc.2024.100439

    19. [19]

      Tianli Hui Tao Zheng Xiaoluo Cheng Tonghui Li Rui Zhang Xianghai Meng Haiyan Liu Zhichang Liu Chunming Xu . A review of plasma treatment on nano-microstructure of electrochemical water splitting catalysts. Chinese Journal of Structural Chemistry, 2025, 44(3): 100520-100520. doi: 10.1016/j.cjsc.2025.100520

    20. [20]

      Guihuang FangWei ChenHongwei YangHaisheng FangChuang YuMaoxiang Wu . Improved performance of LiMn0.8Fe0.2PO4 by addition of fluoroethylene carbonate electrolyte additive. Chinese Chemical Letters, 2024, 35(6): 108799-. doi: 10.1016/j.cclet.2023.108799

Metrics
  • PDF Downloads(11)
  • Abstract views(734)
  • HTML views(57)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return