Citation: Yao Wei, Zhang Yilin, Zhu Haiyan, Ge Chenyang, Wang Dawei. The synthesis and structure of pyridine-oxadiazole iridium complexes and catalytic applications: Non-coordinating-anion-tuned selective C-N bond formation[J]. Chinese Chemical Letters, ;2020, 31(3): 701-705. doi: 10.1016/j.cclet.2019.08.049 shu

The synthesis and structure of pyridine-oxadiazole iridium complexes and catalytic applications: Non-coordinating-anion-tuned selective C-N bond formation

    * Corresponding author.
    E-mail address: wangdw@jiangnan.edu.cn (D. Wang).
  • Received Date: 4 July 2019
    Revised Date: 10 August 2019
    Accepted Date: 10 August 2019
    Available Online: 1 March 2020

Figures(7)

  • Several novel pyridine-oxadiazole iridium complexes were synthesized and characterized through X-ray crystallography. The designed iridium complexes revealed surprisingly high catalytic activity in C-N bondformation of amides and benzyl alcohols with the assistance of non-coordinating anions. In an attempt to achieve borrowing hydrogen reactions of amides with benzyl alcohols, N, N'-(phenylmethylene)dibenzamide products were unexpectedly isolated under non-coordinating anion conditions, whereas N-benzylbenzamide products were achieved in the absence of non-coordinating anions. The mechanism explorations excluded the possibility of "silver effect" (silver-assisted or bimetallic catalysis) and revealed that the reactivity of iridium catalyst was varied by non-coordinating anions. This work provided a convenient and useful methodology that allowed the iridium complex to be a chemoselective catalyst and demonstrated the first example of non-coordinating-anion-tuned selective C-N bond formation.
  • 加载中
    1. [1]

      (a) H.R. Shaterian, A. Hosseinian, M. Ghashang, Can. J. Chem. 86 (2008) 376-383;
      (b) P. Yang, K.Z. Myint, Q. Tong, et al., J. Med. Chem. 55 (2012) 9973-9987;
      (c) C. Ma, L. Wang, P. Yang, K.Z. Myint, X.Q. Xie, J. Chem. Inf. Model. 53 (2013) 11-26.

    2. [2]

      (a) H.R.Shaterian, M.Ghashang, M.Feyzi, Appl.Catal.AGen.345 (2008)128-133;
      (b) J.W. Bode, Curr. Opin. Drug Discov. Devel. 9 (2006) 765-775;
      (c) M. Rodriguez, P. Dubreuil, J.P. Bali, J. Martinez, J. Med. Chem. 30 (1987) 758-763;
      (d) M.G. Liu, N. Liu, W.H. Xu, L. Wang, Tetrahedron 75 (2019) 2748-2754.

    3. [3]

      (a) G. Kour, M. Gupta, Dalton Trans. 46 (2017) 7039-7050;
      (b) M. Kour, S. Paul, New J. Chem. 39 (2015) 6338-6350;
      (c) B. Maleki, M. Baghayeri, RSC Adv. 5 (2015) 79746-79758;
      (d) R. Tayebee, B. Maleki, F.M. Zonoz, R.M. Kakhki, T. Kunani, RSC Adv. 6 (2016) 20687-20694;
      (e) L. Wang, Y.B. Xie, N.Y. Huang, et al., ACS Catal. 6 (2016) 4010-4016;
      (f) L. Wang, Y.B. Xie, N.Y. Huang, et al., Adv. Synth. Catal. 359 (2017) 779-785;
      (g) N. Liu, F. Chao, M.G. Liu, et al., J. Org. Chem. 84 (2019) 2366-2371.

    4. [4]

      (a) A. Corma, J. Navas, M.J. Sabater, Chem. Rev. 118 (2018) 1410-1459;
      (b) G. Chelucci, Coord. Chem. Rev. 331 (2017) 1-36;
      (c) F. Huang, Z. Liu, Z. Yu, Angew. Chem. Int. Ed. 55 (2016) 862-875;
      (d) Q. Yang, Q. Wang, Z. Yu, Chem. Soc. Rev. 44 (2015) 2305-2329;
      (e) A. Nandakumar, S.P. Midya, V.G. Landge, E. Balaraman, Angew. Chem. Int. Ed. 54 (2015) 11022-11034;
      (f) B. Chen, L. Wang, S. Gao, ACS Catal. 5 (2015) 5851-5876;
      (g) K.I. Shimizu, Catal. Sci. Technol. 5 (2015) 1412-1427;
      (h) Y. Obora, ACS Catal. 4 (2014) 3972-3981;
      (i) D. Hollmann, ChemSusChem 7 (2014) 2411-2413.

    5. [5]

      (a) A.J.A. Watson, J.M.J. Williams, Science 329 (2010) 635-636;
      (b) C. Gunanathan, D. Milstein, Science 341 (2013) 249;
      (c) P. Hu, Y. Ben-David, D. Milstein, Angew. Chem. Int. Ed. 55 (2016) 1061-1064;
      (d) P. Daw, S. Chakraborty, J.A. Garg, Y. Ben-David, D. Milstein, Angew. Chem. Int. Ed. 55 (2016) 14373-14377;
      (e) S. Gowrisankar, H. Neumann, M. Beller, Angew. Chem. Int. Ed. 50 (2011) 5139-5143;
      (f) L. Neubert, D. Michalik, S. Bähn, et al., J. Am. Chem. Soc. 134 (2012) 12239-12244;
      (g) M. Zhang, X. Fang, H. Neumann, M. Beller, J. Am. Chem. Soc. 135 (2013) 11384-11388;
      (h) J. Schranck, A. Tlili, M. Beller, Angew. Chem. Int. Ed. 52 (2013) 7642-7644;
      (i) M. Zhang, H. Neumann, M. Beller, Angew. Chem. Int. Ed. 52 (2013) 597-601;
      (j) C.S. Lim, T.T. Quach, Y. Zhao, Angew. Chem. Int. Ed. 56 (2017) 7176-7180.

    6. [6]

      (a) F.G. Mutti, T. Knaus, N.S. Scrutton, M. Breuer, N.J. Turner, Science 349 (2015) 1525-1529;
      (b) J.R. Frost, C.B. Cheong, W.M. Akhtar, et al., J. Am. Chem. Soc. 137 (2015) 15664-15667;
      (c) N. Deibl, R. Kempe, J. Am. Chem. Soc. 138 (2016) 10786-10789;
      (d) T. Yan, B.L. Feringa, K. Barta, ACS Catal. 6 (2016) 381-388;
      (e) C. Schlepphorst, B. Maji, F. Glorius, ACS Catal. 6 (2016) 4184-4188;
      (f) B. Emayavaramban, M. Roy, B. Sundararaju, Chem. -Eur. J. 22 (2016) 3952-3955;
      (g) D. Shen, D.L. Poole, C.C. Shotton, et al., Angew. Chem. Int. Ed. 54 (2015) 1642-1645;
      (h) F. Jiang, M. Achard, C. Bruneau, Chem. -Eur. J. 21 (2015) 14319-14323;
      (i) M.V. Jimenez, J. Fernandez-Tornos, F.J. Modrego, J.J. Perez-Torrente, L.A. Oro, Chem. -Eur. J. 21 (2015) 17877-17889;
      (j) A.J. Rawlings, L.J. Diorazio, M. Wills, Org. Lett. 17 (2015) 1086-1089;
      (k) T.T. Dang, B. Ramalingam, A.M. Seayad, ACS Catal. 5 (2015) 4082-4088;
      (l) X. Xie, H.V. Huynh, ACS Catal. 5 (2015) 4143-4151;
      (m) H. Hikawa, T. Koike, K. Izumi, S. Kikkawa, I. Azumaya, Adv. Synth. Catal. 358 (2016) 784-791;
      (n) H. Hikawa, R. Ichinose, S. Kikkawa, I. Azumaya, Green Chem. 20 (2018) 1297-1305.

    7. [7]

      (a) B. Xiong, S. Zhang, H. Jiang, M. Zhang, Org. Lett. 18 (2016) 724-727;
      (b) Z. Tan, H. Jiang, M. Zhang, Org. Lett. 18 (2016) 3174-3177;
      (c) B. Xiong, S.D. Zhang, L. Chen, et al., Chem. Commun. 52 (2016) 10636-10639;
      (d) Z. Tan, H. Jiang, M. Zhang, Chem. Commun. 52 (2016) 9359-9362;
      (e) F. Xie, R. Xie, J.X. Zhang, et al., ACS Catal. 7 (2017) 4780-4785;
      (f) H.J. Pan, T.W. Ng, Y. Zhao, Chem. Commun. 51 (2015) 11907-11910;
      (g) Z.Q. Rong, Y. Zhang, R.H.B. Chua, H.J. Pan, Y. Zhao, J. Am. Chem. Soc.137 (2015)4944-4947;
      (h) Y. Zhang, C.S. Lim, D.S.B. Sim, H.J. Pan, Y. Zhao, Angew. Chem. Int. Ed. 53 (2014) 1399-1403;
      (i) C.S. Lim, T.T. Quach, Y. Zhao, Angew. Chem. Int. Ed. 56 (2017) 7176-7180;
      (j) X. Chen, H. Zhao, C. Chen, H. Jiang, M. Zhang, Angew. Chem. Int. Ed. 56 (2017) 14232-14326.

    8. [8]

      (a) F. Li, L. Lu, P. Liu, Org. Lett. 18 (2016) 2580-2583;
      (b) R. Wang, H. Fan, W. Zhao, F. Li, Org. Lett. 18 (2016) 3558-3561;
      (c) S.Y. Li, X.H. Li, Q. Li, et al., Green Chem. 17 (2015) 3260-3265;
      (d) Q. Xu, J. Chen, H. Tian, et al., Angew. Chem. Int. Ed. 53 (2014) 225-229;
      (e) X. Cui, X. Dai, Y. Deng, F. Shi, Chem. -Eur. J. 19 (2013) 3665-3675;
      (f) Q. Wang, K. Wu, Z. Yu, Organometallics 35 (2016) 1251-1256;
      (g) T. Liu, L. Wang, K. Wu, Z. Yu, ACS Catal. 8 (2018) 7201-7207.

    9. [9]

      (a) C. Gunanathan, D. Milstein, Angew. Chem. Int. Ed. 47 (2008) 8661-8664;
      (b) F. Shi, M.K. Tse, X.J. Cui, et al., Angew. Chem. Int. Ed. 48 (2009) 5912-5915;
      (c) B. Gnanaprakasam, J. Zhang, D. Milstein, Angew. Chem. Int. Ed. 49 (2010) 1468-1471;
      (d) Y. Zhao, S.W. Foo, S. Saito, Angew. Chem. Int. Ed. 50 (2011) 3006-3009;
      (e) S. Gowrisankar, H. Neumann, M. Beller, Angew. Chem. Int. Ed. 50 (2011) 5139-5143;
      (f)L.Neubert, D.Michalik, S.Bähn, etal., J.Am.Chem.Soc.134 (2012)12239-12244;
      (g) T. Yan, B.L.T. Feringa, K. Barta, Nat. Commun. 5 (2014) 5602-560;
      (h) T. Yan, B.L. Feringa, K. Barta, ACS Catal. 6 (2016) 381-388;
      (i) P. Hu, Y. Ben-David, D. Milstein, Angew. Chem. Int. Ed. 55 (2016) 1061-1064;
      (j) N. Deibl, R. Kempe, J. Am. Chem. Soc. 138 (2016) 10786-10789.

    10. [10]

      (a) X. Cui, Y. Zhang, F. Shi, Y. Deng, Chem. -Eur. J. 17 (2011) 1021-1028;
      (b) Q. Xu, H.M. Xie, E.L. Zhang, et al., Green Chem. 18 (2016) 3940-3944;
      (c) S. Kerdphon, X. Quan, V.S. Parihar, P.G. Andersson, J. Org. Chem. 80 (2015) 11529-11537;
      (d) J. Das, D. Banerjee, J. Org. Chem. 83 (2018) 3378-3384;
      (e) G.C.Y. Choo, H. Miyamura, S. Kobayashi, Chem. Sci. 6 (2015) 1719-1727.

    11. [11]

      (a) D. Wang, K. Zhao, C. Xu, H. Miao, Y. Ding, ACS Catal. 4 (2014) 3910-3918;
      (b) Y. Yang, A. Qin, K. Zhao, D. Wang, X. Shi, Adv. Synth. Catal. 358 (2016) 1433-1439;
      (c) Z. Xu, D.S. Wang, X. Yu, Y. Yang, D. Wang, Adv. Synth. Catal. 359 (2017) 3332-3340;
      (d) Q. Wu, L. Pan, G. Du, C. Zhang, D. Wang, Org. Chem. Front. 5 (2018) 2668-2675;
      (e) R. Huang, Y. Yang, D.S. Wang, L. Zhang, D. Wang, Org. Chem. Front. 5 (2018) 203-209;
      (f) C. Ge, X. Sang, W. Yao, L. Zhang, D. Wang, Green Chem. 20 (2018) 1805-1812;
      (g) Z. Xu, X. Yu, X. Sang, D. Wang, Green Chem. 20 (2018) 2571-2577;
      (h) X. Hu, H. Zhu, X. Sang, D. Wang, Adv. Synth. Catal. 360 (2018) 4293-4300;
      (j) D. Ye, R. Huang, H. Zhu, L.H. Zou, D. Wang, Org. Chem. Front. 6 (2019) 62-69;
      (j.) D. Ye, L. Pan, H. Zhu, et al., Mater.Chem. Front. 3 (2019) 216-223.

    12. [12]

      D. Wang, R. Cai, S. Sharma, et al., J. Am. Chem. Soc. 134 (2012) 9012-9019.  doi: 10.1021/ja303862z

    13. [13]

      (a) D. Wang, X. Yu, X. Xu, et al., Chem. -Eur. J. 22 (2016) 8663-8668;
      (b) X. Yu, D.S. Wang, Z. Xu, B. Yang, D. Wang, Org. Chem. Front. 4 (2017) 1011-1018;
      (c) X. Yu, W. Yao, H. Wan, Z. Xu, D. Wang, J. Organomet. Chem. 822 (2016) 100-103.

  • 加载中
    1. [1]

      Wada KenjiYu HanFeng Qi . Titania-supported iridium catalysts for dehydrogenative synthesis of benzimidazoles. Chinese Chemical Letters, 2020, 31(3): 605-608. doi: 10.1016/j.cclet.2019.05.054

    2. [2]

      Vivek T. Humne Shankaraiah G. Konda Kamal Hasanzadeh Pradeep D. Lokhande . Iodine-mediated facile dehydrogenation of dihydropyridazin-3(2H)one. Chinese Chemical Letters, 2011, 22(12): 1435-1438. doi: 10.1016/j.cclet.2011.07.019

    3. [3]

      Jian Fei Ding Zhang Feng Qin Xue Kuan Li Guo Fu Wang Jian Guo Wang . Coupling dehydrogenation of isobutane in the presence of carbon dioxide over chromium oxide supported on active carbon. Chinese Chemical Letters, 2008, 19(9): 1059-1062. doi: 10.1016/j.cclet.2008.05.041

    4. [4]

      Xu Qing-SongLi ChenXu YongXu DefengShen Mei-HuaXu Hua-Dong . Ruthenium catalyzed amination cyclization of 1, 2, 4-butanetriol with primary amines: A borrowing hydrogen strategy for 3-pyrrolidinol synthesis. Chinese Chemical Letters, 2020, 31(1): 103-106. doi: 10.1016/j.cclet.2019.05.027

    5. [5]

      Ya-Qing XuShen-Luan YuYan-Yun LiZhen-Rong DongJing-Xing Gao . Novel chiral C2-symmetric multidentate aminophosphine ligands for use in catalytic asymmetric reduction of ketones. Chinese Chemical Letters, 2013, 24(6): 527-530.

    6. [6]

      Cuong Duong-VietHousseinou BaYuefeng LiuLai Truong-PhuocJean-Mario NhutCuong Pham-Huu . Nitrogen-doped carbon nanotubes on silicon carbide as a metal-free catalyst. Chinese Journal of Catalysis, 2014, 35(6): 906-913. doi: 10.1016/S1872-2067(14)60116-9

    7. [7]

      Fang Li Jing Wei Chu Yuan Yuan Zhang Ye Qiang Chen Shi Zhong Luo . Synthesis of 2-methylpyrazine from cyclocondensation of ethylene diamine and propylene glycol over promoted copper catalyst. Chinese Chemical Letters, 2008, 19(6): 752-755. doi: 10.1016/j.cclet.2008.04.007

    8. [8]

      Zhao Zheng-LeGu QingWu Xin-YanYou Shu-Li . Enantioselective synthesis of 10-allylanthrones via iridium-catalyzed allylic substitution reaction. Chinese Chemical Letters, 2016, 27(5): 619-622. doi: 10.1016/j.cclet.2016.02.017

    9. [9]

      Zhao ShiyongXu BolianYu LeiFan Yining . Catalytic dehydrogenation of propane to propylene over highly active PtSnNa/γ-Al2O3 catalyst. Chinese Chemical Letters, 2018, 29(3): 475-478. doi: 10.1016/j.cclet.2017.09.020

    10. [10]

      Zhao YujunLi SijiaWang ZhengWang ShengnianWang ShengpingMa Xinbin . New ZnCe catalyst encapsulated in SBA-15 in the production of 1, 3-butadiene from ethanol. Chinese Chemical Letters, 2020, 31(2): 535-538. doi: 10.1016/j.cclet.2019.04.038

    11. [11]

      Du YingShen Yang-BinZhan Yu-LuNing Fan-DiYan Liu-MingZhou Xiao-Chun . Highly active iridium catalyst for hydrogen production from formic acid. Chinese Chemical Letters, 2017, 28(8): 1746-1750. doi: 10.1016/j.cclet.2017.05.018

    12. [12]

      AI SHA·Nu La HongLIU JiaxuHE NingGUO Hongchen . Catalytic conversion of n-butane over Au-Zn-modified nano-sized HZSM-5. Chinese Journal of Catalysis, 2013, 34(6): 1262-1266. doi: 10.1016/S1872-2067(12)60539-7

    13. [13]

      Pembere Anthony M.S.Cui ChaonanWu HaimingLuo Zhixun . Small gold clusters catalyzing oxidant-free dehydrogenation of glycerol initiated by methene hydrogen atom transfer. Chinese Chemical Letters, 2019, 30(5): 1000-1004. doi: 10.1016/j.cclet.2018.12.019

    14. [14]

      Bingyin WangXiaohu YuChunfang HuoJianguo WangYongwang Li . Density functional theory study of the adsorption and reaction of C2H4 on Fe3C(100). Chinese Journal of Catalysis, 2014, 35(1): 28-37. doi: 10.1016/S1872-2067(12)60703-7

    15. [15]

      DU XianlongLIU YongmeiWANG JianqiangCAO YongFAN Kangnian . Catalytic conversion of biomass-derived levulinic acid into -valerolactone using iridium nanoparticles supported on carbon nanotubes. Chinese Journal of Catalysis, 2013, 34(5): 993-1001. doi: 10.1016/S1872-2067(11)60522-6

    16. [16]

      ZHANG Ding-LinYANG Chao-FenFENG JianFU Hai-YanCHEN HuaLI Rui-XiangLI Xian-Jun . Asymmetric Hydrogenations of Acetophenone and Its Derivatives over Ir/HAP Modified by (1S, 2S)-DPEN. Acta Physico-Chimica Sinica, 2009, 25(10): 2039-2044. doi: 10.3866/PKU.WHXB20090935

    17. [17]

      WU Jia-ManJIANG He-YanFU Hai-YanCHEN HuaLI Rui-XiangLI Xian-Jun . Asymmetric Hydrogenation of Benzalacetone Catalyzed by (1S,2S)-DPEN Modified 3%Ir/SiO2/2TPP Catalysts. Acta Physico-Chimica Sinica, 2009, 25(12): 2461-2466. doi: 10.3866/PKU.WHXB20091107

    18. [18]

      YANG Chao-FenYANG JunZHU Yan-QinSUN Xiao-DongLI Xian-JunCHEN Hua . Asymmetric Hydrogenation of Acetophenone and Its Derivatives Catalyzed by L-Proline Stabilized Iridium. Acta Physico-Chimica Sinica, 2011, 27(12): 2887-2892. doi: 10.3866/PKU.WHXB20112887

    19. [19]

      SUN Hong-YanZHAO Lian-HuaYu Feng-Chun . Preparation and Characterization of Pt-Ir-SnO2/C Anode Catalyst for Direct Ethanol Fuel Cell. Acta Physico-Chimica Sinica, 2013, 29(05): 959-965. doi: 10.3866/PKU.WHXB201303042

    20. [20]

      JIANG He-YanWU Zhi-FengCHEN Hua . Asymmetric Hydrogenation of Aromatic Ketones Catalyzed by Cinchona-Modified Ir/SiO2. Acta Physico-Chimica Sinica, 2013, 29(07): 1572-1581. doi: 10.3866/PKU.WHXB201304243

Metrics
  • PDF Downloads(1)
  • Abstract views(102)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return