Citation: Li Jian, Hu Qi-Long, Chen Xue-Ping, Hou Ke-Qiang, Chan Albert S.C., Xiong Xiao-Feng. Asymmetric synthesis of tetrahydropyran[3, 2-c]quinolinones via an organocatalyzed formal[3 + 3] annulation of quinolinones and MBH 2-naphthoates of nitroolefin[J]. Chinese Chemical Letters, ;2020, 31(3): 697-700. doi: 10.1016/j.cclet.2019.08.040 shu

Asymmetric synthesis of tetrahydropyran[3, 2-c]quinolinones via an organocatalyzed formal[3 + 3] annulation of quinolinones and MBH 2-naphthoates of nitroolefin

Figures(6)

  • An efficient asymmetric and enantio-swithchable organocatalytic[3 + 3] annulation reaction using MBH-2-naphthoates of nitroalkenes and 4-hydroxyquinolin-2(1H)-ones has been developed. Densely substituted tetrahydropyrano[3, 2-c]quinolinones scaffolds with two adjacent stereogenic centers are obtained with high yield (up to 95% yield) and good stereoselectivities (up to > 20:1 dr and 96% ee) in an enantio-switchable manner. Furthermore, gram scale synthesis was achieved and the nitro group could easily transform into an amino group without any appreciable loss in the diastereo-and enantioselectivity.
  • 加载中
    1. [1]

      (a) T. Shiro, T. Fukaya, M. Tobe, Eur. J. Med. Chem. 97 (2015) 397-408;
      (b) B. Liu, F. Li, T. Zhou, X.Q. Tang, G.W. Hu, J. Heterocycl. Chem. 55 (2018) 1863-1873;
      (c) T. Yasumoto, Chem. Rec. 1 (2001) 228-242;
      (d) A. Bermejo, B. Figadère, M.C. Zafra-Polo, et al., Nat. Prod. Rep. 22 (2005) 269-303;
      (e) M. Murata, T. Yasumoto, Nat. Prod. Rep. 17 (2000) 293-314.

    2. [2]

      (a) V. Nadaraj, S. Thamarai Selvi, H. Pricilla Bai, S. Mohan, T. Daniel Thangadurai, Med. Chem. Res. 21 (2011) 2902-2910;
      (b) Z.D. Yang, D.B. Zhang, J. Ren, M.J. Yang, Med. Chem. Res. 21 (2012) 722-725.

    3. [3]

      J.E. Neve, H.P. Wijesekera, S. Duffy, et al., J. Med. Chem. 57 (2014) 1252-1275.  doi: 10.1021/jm401321v

    4. [4]

      I.S. Chen, I.W. Tsai, C.M. Teng, et al., Phytochemistry 46 (1997) 525-529.  doi: 10.1016/S0031-9422(97)00280-X

    5. [5]

      T.T. Lin, Y.Y. Huang, G.H. Tang, et al., J. Nat. Prod. 77 (2014) 955-962.  doi: 10.1021/np401040d

    6. [6]

      (a) X.X. Sun, H.H. Zhang, G.H. Li, Y.Y. He, F. Shi, Chem. -Eur. J. 22 (2016) 17526-17532;
      (b) Z.Q. Zhu, L. Yu, M. Sun, G.J. Mei, F. Shi, Adv. Synth. Catal. 360 (2018) 3109-3116;
      (c) X.X. Sun, C. Li, Y.Y. He, et al., Adv. Synth. Catal. 359 (2017) 2660-2670;
      (d) W. Dai, H. Lu, F. Shi, S.J. Tu, Chem. -Eur. J. 20 (2014) 11382-11389;
      (e) X. Yang, Y.C. Zhang, Q.N. Zhu, M.S. Tu, F. Shi, J. Org. Chem. 81 (2016) 5056-5065;
      (f) F. Shi, R.Y. Zhu, W. Dai, C.S. Wang, S.J. Tu, Chem. -Eur. J. 20 (2014) 2597-2604.

    7. [7]

      (a) A. Temperini, A. Barattucci, P.M. Bonaccorsi, O. Rosati, L. Minuti, J. Org. Chem. 80 (2015) 8102-8112;
      (b) C. Bosset, P. Angibaud, I. Stanfield, et al., J. Org. Chem. 80 (2015) 12509-12525;
      (c) T.J. Potter, J.A. Ellman, Org. Lett. 18 (2016) 3838-3841;
      (d) J. Scoccia, S.J. Pérez, V. Sinka, et al., Org. Lett. 19 (2017) 4834-4837;
      (e) Y. Kurimoto, T. Nasu, Y. Fujii, K. Asano, S. Matsubara, Org. Lett. 21 (2019) 2156-2160;
      (f) X. Xie, C. Peng, G. He, et al., Chem. Commun. 48 (2012) 10487-10489.

    8. [8]

      (a) J.Y. Liu, X.C. Yang, H. Lu, Y.C. Gu, P.F. Xu, Org. Lett. 20 (2018) 2190-2194;
      (b) D.K. Nair, R.F.S. Menna-Barreto, E.N. da Silva Júnior, S.M. Mobin, I.N.N. Namboothiri, Chem. Commun. 50 (2014) 6973-6976;
      (c) R. Chen, X. Fan, J. Gong, Z. He, Asian J. Org. Chem. 3 (2014) 877-885;
      (d) C.Y. Yu, M. Yaqub, Y.M. Jia, Z.T. Huang, Synlett 9 (2008) 1357-1360;
      (e) W. Xiao, X. Yin, Z. Zhou, W. Du, Y.C. Chen, Org. Lett. 18 (2015) 116-119;
      (f) S. Chandrasekhar, K. Mallikarjun, G. Pavankumarreddy, K.V. Rao, B. Jagadeesh, Chem. Commun. (2009) 4985-4987;
      (g) B. Han, Y.C. Xiao, Z.Q. He, Y.C. Chen, Org. Lett. 11 (2009) 4660-4663;
      (h) M.L. Shi, G. Zhan, S.L. Zhou, W. Du, Y.C. Chen, Org. Lett. 18 (2016) 6480-6483;
      (i) L. Yang, W. Huang, X.H. He, et al., Adv. Synth. Catal. 358 (2016) 2970-2975.

    9. [9]

      R. Gurubrahamam, B.F. Gao, Y.M. Chen, et al., Org. Lett. 18 (2016) 3098-3101.  doi: 10.1021/acs.orglett.6b01265

    10. [10]

      (a) V. Modrocká, E. Veverková, M. Meciarová, R. Šebesta, J. Org. Chem. 83 (2018) 13111-13120;
      (b) J. Zhang, G. Yin, Y. Du, et al., J. Org. Chem. 82 (2017) 13594-13601.

    11. [11]

      Y. Zheng, L. Cui, Y. Wang, Z. Zhou, J. Org. Chem. 81 (2016) 4340-4346.  doi: 10.1021/acs.joc.6b00196

    12. [12]

      E. Vitaku, D.T. Smith, J.T. Njardarson, J. Med. Chem. 57 (2014) 10257-10274.  doi: 10.1021/jm501100b

    13. [13]

      (a) V. Nair, P.M. Treesa, C.N. Jayan, et al., Tetrahedron 57 (2001) 7711-7717;
      (b) A. Klásek, O. Rudolf, M. Rouchal, A. Lycka, A. Ru 9žicka, Tetrahedron 69 (2013) 9492-499;
      (c) Y. Gu, J. Barrault, F. Jérôme, Adv. Synth. Catal. 351 (2009) 3269-3278;
      (d) M. Rueping, E. Merino, M. Bolte, Org. Biomol. Chem. 10 (2012) 6201-6210;
      (e) Y.R. Lee, B.S. Kim, H.I. Kweon, Tetrahedron 56 (2000) 3867-3874;
      (f) Y.R. Lee, H.I. Kweon, W.S. Koh, et al., Synthesis (Stuttgart) (2001) 1851-1855;
      (g) X. Zhu, A. Lin, Y. Shi, et al., Org. Lett. 13 (2011) 4382-4385.

    14. [14]

      (a) W. Xiao, X. Yin, Z. Zhou, W. Du, Y.C. Chen, Org. Lett. 18 (2016) 116-119;
      (b) L.F. Yeh, S. Anwar, K. Chen, Tetrahedron 68 (2012) 7317-7321;
      (c) D.K. Nair, S.M. Mobin, I.N.N. Namboothiri, Tetrahedron Lett. 53 (2012) 3349-3352.

    15. [15]

      A. Dey, A. Hajra, Org. Biomol. Chem. 15 (2017) 8084-8090.  doi: 10.1039/C7OB02124K

  • 加载中
    1. [1]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

    2. [2]

      Qian WangYeping BianGagan DhawanWei ZhangAlexander E. SorochinskyAta MakaremVadim A. SoloshonokJianlin Han . FDA approved fluorine-containing drugs in 2023. Chinese Chemical Letters, 2024, 35(11): 109780-. doi: 10.1016/j.cclet.2024.109780

    3. [3]

      Yuemin ChenYunqi WuGuoao WangFeihu CuiHaitao TangYingming Pan . Electricity-driven enantioselective cross-dehydrogenative coupling of two C(sp3)-H bonds enabled by organocatalysis. Chinese Chemical Letters, 2024, 35(9): 109445-. doi: 10.1016/j.cclet.2023.109445

    4. [4]

      Jingping HuJing Xu . Total synthesis of a putative yuzurimine-type Daphniphyllum alkaloid C14epi-deoxycalyciphylline H. Chinese Chemical Letters, 2024, 35(4): 108733-. doi: 10.1016/j.cclet.2023.108733

    5. [5]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    6. [6]

      Long JinJian HanDongmei FangMin WangJian Liao . Pd-catalyzed asymmetric carbonyl alkynylation: Synthesis of axial chiral ynones. Chinese Chemical Letters, 2024, 35(6): 109212-. doi: 10.1016/j.cclet.2023.109212

    7. [7]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    8. [8]

      Xiang HuangDongzhen XuYang LiuXia HuangYangfan WuDongmei FangBing XiaWei JiaoJian LiaoMin Wang . Asymmetric synthesis of difluorinated α-quaternary amino acids (DFAAs) via Cu-catalyzed difluorobenzylation of aldimine esters. Chinese Chemical Letters, 2024, 35(12): 109665-. doi: 10.1016/j.cclet.2024.109665

    9. [9]

      Ao SunZipeng LiShuchun LiXiangbao MengZhongtang LiZhongjun Li . Stereoselective synthesis of α-3-deoxy-D-manno-oct-2-ulosonic acid (α-Kdo) derivatives using a C3-p-tolylthio-substituted Kdo fluoride donor. Chinese Chemical Letters, 2025, 36(3): 109972-. doi: 10.1016/j.cclet.2024.109972

    10. [10]

      Yu-Hang MiaoZheng-Xu ZhangXu-Yi HuangYuan-Zhao HuaShi-Kun JiaXiao XiaoMin-Can WangLi-Ping XuGuang-Jian Mei . Catalytic asymmetric dearomative azo-Diels–Alder reaction of 2-vinlyindoles. Chinese Chemical Letters, 2024, 35(4): 108830-. doi: 10.1016/j.cclet.2023.108830

    11. [11]

      Hongjin ShiGuoyin YinXi LuYangyang Li . Stereoselective synthesis of 2-deoxy-α-C-glycosides from glycals. Chinese Chemical Letters, 2024, 35(12): 109674-. doi: 10.1016/j.cclet.2024.109674

    12. [12]

      Ruixue LiuXiaobing DingQiwei LangGen-Qiang ChenXumu Zhang . Enantioselective and divergent construction of chiral amino alcohols and oxazolidin-2-ones via Ir-f-phamidol-catalyzed dynamic kinetic asymmetric hydrogenation. Chinese Chemical Letters, 2025, 36(3): 110037-. doi: 10.1016/j.cclet.2024.110037

    13. [13]

      Hong-Tao JiYu-Han LuYan-Ting LiuYu-Lin HuangJiang-Feng TianFeng LiuYan-Yan ZengHai-Yan YangYong-Hong ZhangWei-Min He . Nd@C3N4-photoredox/chlorine dual catalyzed synthesis and evaluation of antitumor activities of 4-alkylated sulfonyl ketimines. Chinese Chemical Letters, 2025, 36(2): 110568-. doi: 10.1016/j.cclet.2024.110568

    14. [14]

      Tao ZhouJing ZhouYunyun LiuJie-Ping WanFen-Er Chen . Transition metal-free tunable synthesis of 3-(trifluoromethylthio) and 3-trifluoromethylsulfinyl chromones via domino C–H functionalization and chromone annulation of enaminones. Chinese Chemical Letters, 2024, 35(11): 109683-. doi: 10.1016/j.cclet.2024.109683

    15. [15]

      Ruofan YinZhaoxin GuoRui LiuXian-Sen Tao . Ultrafast synthesis of Na3V2(PO4)3 cathode for high performance sodium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109643-. doi: 10.1016/j.cclet.2024.109643

    16. [16]

      Liyong DingZhenhua PanQian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125

    17. [17]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    18. [18]

      Kebo XieQian ZhangFei YeJungui Dai . A multi-enzymatic cascade reaction for the synthesis of bioactive C-oligosaccharides. Chinese Chemical Letters, 2024, 35(6): 109028-. doi: 10.1016/j.cclet.2023.109028

    19. [19]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

    20. [20]

      Yuexiang LiuXiangqiao YangTong LinGuantian YangXiaoyong XuBubing ZengZhong LiWeiping ZhuXuhong Qian . Efficient continuous synthesis of 2-[3-(trifluoromethyl)phenyl]malonic acid, a key intermediate of Triflumezopyrim, coupling with esterification-condensation-hydrolysis. Chinese Chemical Letters, 2025, 36(1): 109747-. doi: 10.1016/j.cclet.2024.109747

Metrics
  • PDF Downloads(7)
  • Abstract views(939)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return