Citation: Cai Yan, Wang Yang, Wang Chenwei, Long Renhua, Cao Leyu, Chen Yanmei, Yao Yong. Hierarchical self-assembly of 3D amphiphilic discrete organoplatinum (II) metallacage in water[J]. Chinese Chemical Letters, ;2020, 31(3): 689-692. doi: 10.1016/j.cclet.2019.08.036 shu

Hierarchical self-assembly of 3D amphiphilic discrete organoplatinum (II) metallacage in water

    * Corresponding author.
    E-mail address: yaoyong1986@ntu.edu.cn (Y. Yao).
  • Received Date: 9 June 2019
    Available Online: 1 March 2020

Figures(7)

  • Here we described the design and synthesis of a discrete 3D amphiphilic metallacage 4, in which the tetragonal prismatic frameworks act as the hydrophobic cores and the poly(ethylene glycol) (PEG) chains as the hydrophilic tails. The structure of 4 was characterized by 1H NMR, 31P NMR and electrospray ionization time-of-flight mass spectrometry (ESI-TOF-MS). Notably, 4 with its long PEG tails was subsequently ordered into micelles at a low concentration (1.20 ×10-6 mol/L) in water. As the concentration and cultivation time increased, the micelles can further self-assembly into nanofibers and nanoribbons. Considering the dynamic property of the coordination bond, these structures show reversible transformation under external stimuli.
  • 加载中
    1. [1]

      (a) J.W. Bryson, S.F. Betz, H.S. Lu, et al., Science 270 (1995) 935-941;
      (b) Y. Cao, Y. Duan, L. Han, S. Che, Chem. Commun. 53 (2017) 5641-5644;
      (c) S.M.F. Vilela, P. Salcedo-Abraira, L. Micheron, et al., Chem. Commun. 54 (2018) 13088-13091;
      (d) C.W. Chu, B.J. Ravoo, Chem. Commun. 53 (2017) 12450-12453;
      (e) W. Lin, T.Y. Cen, S.P. Wang, et al., Chin. Chem. Lett. 29 (2018) 1372-1374;
      (f) S.P. Wang, W. Lin, X. Wang, et al., Nat. Commun. 10 (2019) 1399.

    2. [2]

      (a) X. Yan, S. Li, T.R. Cook, et al., J. Am. Chem. Soc. 135 (2013) 14036-14039;
      (b) H.J. Kim, T. Kim, M. Lee, Acc. Chem. Res. 44 (2011) 72-82;
      (c) Y. Liu, C. Yu, H. Jin, et al., J. Am. Chem. Soc. 135 (2013) 4765-4770;
      (d) S. Sun, M. Geng, L. Huang, et al., Chem. Commun. 54 (2018) 13006-13009;
      (e) A. Sakaguchi, K. Higashiguchi, K. Matsuda, Chem. Commun. 54 (2018) 4298-4301;
      (f) M. He, L. Chen, B. Jiang, et al., Chin. Chem. Lett. 30 (2019) 131-134;
      (g) J. Chen, Y. Wang, C. Wang, et al., Chem. Commun. 55 (2019) 6817-6826.

    3. [3]

      (a) Z.Q. Cao, Y.C. Wang, A.H. Zou, et al., Chem. Commun. 53 (2017) 8683-8686;
      (b) K. Jie, Y. Zhou, Y. Yao, F. Huang, Chem. Soc. Rev. 44 (2015) 3568-3587;
      (c) I. Pisagatti, L. Barbera, G. Gattuso, et al., New J. Chem. 43 (2019) 7628-7635;
      (d) P.Zhang, E.Paszkiewicz, Q.Wang, etal., Chem.Commun.53 (2017)10528-10531;
      (e) Y. Zhou, K. Jie, F. Huang, Chem. Commun. 54 (2018) 12856-12859;
      (f) Y. Chen, S. Sun, D. Lu, et al., Chin. Chem. Lett. 30 (2019) 37-43;
      (g) Y. Yao, X. Wei, J. Chen, et al., Supramol. Chem. 30 (2018) 610-619;
      (h) T. Xiao, W. Zhong, L. Zhou, et al., Chin. Chem. Lett. 30 (2019) 31-36.

    4. [4]

      (a) M. Fujita, M. Tominaga, A. Hori, B. Therrien, Acc. Chem. Res. 38 (2005) 369-378;
      (b) C.G. Oliveri, P.A. Ulmann, M.J. Wiester, C.A. Mirkin, Acc. Chem. Res. 41 (2008) 1618-1629;
      (c) B.H. Northrop, Y.R. Zheng, K.W. Chi, P.J. Stang, Acc. Chem. Res. 42 (2009) 1554-1563;
      (d) S. De, K. Mahata, M. Schmittel, Chem. Soc. Rev. 39 (2010) 1555-1575;
      (e) N.N. Adarsh, P. Dastidar, Chem. Soc. Rev. 41 (2012) 3039-3060;
      (f) L.E. Kreno, K. Leong, O.K. Farha, et al., Chem. Rev. 112 (2012) 1105-1125;
      (g) T.R. Cook, Y.R. Zheng, P.J. Stang, Chem. Rev. 113 (2013) 734-777;
      (h) T.R. Cook, P.J. Stang, Chem. Rev. 115 (2015) 7001-7045;
      (i) C.J. Brown, F.D. Toste, R.G. Bergman, K.N. Raymond, Chem. Rev. 115 (2015) 3012-3035.

    5. [5]

      (a) Q.F. Sun, S. Sato, M. Fujita, Nat. Chem. 4 (2012) 330-333;
      (b) J. Fan, M.L. Saha, B. Song, H. Schonherr, M. Schmittel, J. Am. Chem. Soc. 134 (2012) 150-153;
      (c) A. Sautter, B.K. Kaletas, D.G. Schmid, et al., J. Am. Chem. Soc. 127 (2005) 6719-6729.

    6. [6]

      (a) Y. Inokuma, M. Kawano, M. Fujita, Nat. Chem. 3 (2011) 349-358;
      (b) X. Yan, S. Li, J.B. Pollock, et al., Proc. Natl. Acad. Sci. U. S. A. 110 (2013) 15585-15590;
      (c) X. Yan, B. Jiang, T.R. Cook, et al., J. Am. Chem. Soc.135 (2013) 16813-16816;
      (d) Z.Y. Li, Y. Zhang, C.W. Zhang, et al., J. Am. Chem. Soc.136 (2014) 8577-8589;
      (e) X. Yan, J.F. Xu, T.R. Cook, et al., Proc. Natl. Acad. Sci. U. S. A. 111 (2014) 8717-8722;
      (f) M. Yamashina, M.M. Sartin, Y. Sei, et al., J. Am. Chem. Soc. 137 (2015) 9266-9269;
      (g) B. Roy, A.K. Ghosh, S. Srivastava, P. D'Silva, P.S. Mukherjee, J. Am. Chem. Soc. 137 (2015) 11916-11919.

    7. [7]

      (a) Y. Wang, C. Wang, R. Long, et al., Chem. Commun. 55 (2019) 5167-5170;
      (b) Y. Yao, R. Zhao, Y. Shi, et al., Chem. Commun. 54 (2018) 8068-8071.

    8. [8]

      Y. Shi, I. Sanchez-Molina, C. Cao, et al., Proc. Natl. Acad. Sci. U. S. A. 111 (2014) 9390-9395.  doi: 10.1073/pnas.1408905111

    9. [9]

      Y. Yao, M. Xue, J. Chen, et al., J. Am. Chem. Soc. 134 (2012) 15712-15715.  doi: 10.1021/ja3076617

    10. [10]

      (a) G. Yu, X. Zhou, Z. Zhang, et al., J. Am. Chem. Soc. 134 (2012) 19489-19497;
      (b) K. Wang, D.S. Guo, X. Wang, Y. Liu, ACS Nano 5 (2011) 2880-2894.

    11. [11]

      C. Wang, S. Yin, S. Chen, et al., Angew. Chem. Int. Ed. 47 (2008) 9049-9052.  doi: 10.1002/anie.200803361

    12. [12]

      (a) L.J. Chen, G.Z. Zhao, B. Jiang, et al., J. Am. Chem. Soc.136 (2014) 5993-6001;
      (b) S. Li, J. Huang, T.R. Cook, et al., J. Am. Chem. Soc. 135 (2013) 2084-2087;
      (c) S. Li, J. Huang, F. Zhou, et al., J. Am. Chem. Soc. 136 (2014) 5908-5911.

  • 加载中
    1. [1]

      Fa Bao Zhao Zhi Lei Liu Jian Ping Sun Liang Feng Ji Wen Hu . Optically active micelles from self-assembly of MPEG-b-PMALM copolymer in water. Chinese Chemical Letters, 2009, 20(2): 231-234. doi: 10.1016/j.cclet.2008.10.044

    2. [2]

      Yu-Xin ZhangXiao-Dong HaoZeng-Peng Diao . Templated self-assembly of Au-TiO2 binary nanoparticles-nanotubes. Chinese Chemical Letters, 2014, 25(6): 874-878. doi: 10.1016/j.cclet.2014.03.038

    3. [3]

      Shi Chao Xu Bing Cheng Hu Wei You Zhou Cheng Guo Sun Zu Liang Liu . The synthesis, self-assembly and electrocatalytic property of a novel disulphide derivatised cobalt(Ⅱ) deuteroporphyrin. Chinese Chemical Letters, 2012, 23(2): 157-160. doi: 10.1016/j.cclet.2011.11.011

    4. [4]

      Wang Tian-NanYang GuangWu Li-BinChen Guo-Song . Self-assembly of supra-amphiphile of azobenzenegalactopyranoside based on dynamic covalent bond and its dual responses. Chinese Chemical Letters, 2016, 27(12): 1740-1744. doi: 10.1016/j.cclet.2016.05.009

    5. [5]

      Feng-Wen HouLi-Min WuYong-Min GuoYi LiBao-Zong Li . A chirality indicator for the walls and the surfaces of silica nanotubes. Chinese Chemical Letters, 2013, 24(8): 770-772.

    6. [6]

      Xuan ZhangXu-Dong Li . Solvent atmosphere controlled self-assembly of unmodified C60:A facile approach for constructing various architectures. Chinese Chemical Letters, 2014, 25(6): 912-914. doi: 10.1016/j.cclet.2014.03.041

    7. [7]

      Zhi-Gang TaoTian-Guang ZhanTian-You ZhouXin ZhaoZhan-Ting Li . Synthesis, properties, and self-assembly of 2,3-bis(n-octyl)hexaazatriphenylene. Chinese Chemical Letters, 2013, 24(6): 453-456.

    8. [8]

      Xiao-Hai YangFang ZhaoLei-Liang HeKe-Min WangJin HuangQing WangJian-Bo LiuMeng Yang . A facile approach toward multicolor polymers:Supramolecular self-assembly via host-guest interaction. Chinese Chemical Letters, 2014, 25(10): 1318-1322. doi: 10.1016/j.cclet.2014.05.051

    9. [9]

      Ren-Bo WeiXiao-Gong WangYa-Ning He . Synthesis, self-assembly and photo-responsive behavior of AB2 shaped amphiphilic azo block copolymer. Chinese Chemical Letters, 2015, 26(7): 857-861. doi: 10.1016/j.cclet.2015.04.019

    10. [10]

      Yan ZhaoJie DingXue-Bin Huang . Synthesis and self-assembly of phthalocyanines bearing sulfur-containing substituents. Chinese Chemical Letters, 2014, 25(1): 46-50.

    11. [11]

      Peng-Xia LiangDong WangZong-Cheng MiaoZhao-Kui JinHuai YangZhou Yang . Spectral and self-assembly properties of a series of asymmetrical pyrene derivatives. Chinese Chemical Letters, 2014, 25(2): 237-242.

    12. [12]

      Ning GU Jian Hui LIAO Lan HUANG Zhi Rui GUO Wei YU Li Na XU Jing WANG . Self-assembly of Gold Nanoparticle Chains between Nanoelectrodes. Chinese Chemical Letters, 2006, 17(6): 845-847.

    13. [13]

      Jiu-Cun ChenJun-Zhi LiJian-Hua LiuLi-Qun Xu . Amphiphilic poly(ethylene glycol)-b-poly(ethylene brassylate) copolymers: One-pot synthesis, self-assembly, and controlled drug release. Chinese Chemical Letters, 2015, 26(10): 1319-1321. doi: 10.1016/j.cclet.2015.05.050

    14. [14]

      Zhi Qiang Jiang Xian Mo Deng Jian Yuan Hao . Novel thermogelling poly(ε-caprolactone-co-lactide)-poly(ethylene glycol)-poly(ε-caprolactone-co-lactide) aqueous solutions. Chinese Chemical Letters, 2007, 18(6): 747-749. doi: 10.1016/j.cclet.2007.04.037

    15. [15]

      Yu-Zhen ZhaoZhen-Lin ZhangYing LiXue-Qiang LiuShi-Min LiuJin-Ku YuHai-Quan Zhang . Self-assembly behaviors of the cholesteryl trimeric-phenylene vinylene derivative in the H2O/THF system. Chinese Chemical Letters, 2014, 25(1): 99-103.

    16. [16]

      Hu JieniXu YueZhang Yan . Amphiphilic random polycarbonate self-assemble into GSH/pH dual responsive micelle-like aggregates in water. Chinese Chemical Letters, 2019, 30(12): 2039-2042. doi: 10.1016/j.cclet.2019.05.017

    17. [17]

      Joseph JankolovitsJeff W. KampfVincent L. Pecoraro . Assembly of zinc metallacrowns with an α-amino hydroxamic acid ligand. Chinese Chemical Letters, 2015, 26(4): 444-448. doi: 10.1016/j.cclet.2015.01.017

Metrics
  • PDF Downloads(2)
  • Abstract views(88)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return