Citation: Wang Chunhai, Huang Xiaoling, Liu Xueting, Gao Suqian, Zhao Bin, Yang Shangdong. Photo-induced phosphorus radical involved semipinacol rearrangement reaction: Highly synthesis of γ-oxo-phosphonates[J]. Chinese Chemical Letters, ;2020, 31(3): 677-680. doi: 10.1016/j.cclet.2019.08.011 shu

Photo-induced phosphorus radical involved semipinacol rearrangement reaction: Highly synthesis of γ-oxo-phosphonates

    * Corresponding author at: State Key Laboratory of Applied Organic Chemistry Lanzhou University Lanzhou 730000 China
    E-mail address: yangshd@lzu.edu.cn (S. Yang).
  • Received Date: 5 June 2019
    Revised Date: 23 July 2019
    Accepted Date: 23 July 2019
    Available Online: 1 March 2020

Figures(7)

  • Hydroxyphosphoric acids display the unique biological activities, and they have some attractive prospects as clinical drug moleculars. Herein, a new approach for the synthesis of γ-oxo-phosphonates (the precursor of hydroxyphosphoric acid) has been established through the semipinacol rearrangement tactic involved the photo-induced phosphorus radical process. Most important, this transformation is avoid of the external oxidants, and occurs very well under the sunlight irradiation, meanwhile the γ-oxo-phosphonate was easily derivatized to obtain γ-hydroxyphosphoric acid, thus highlights the synthesis value of this method.
  • 加载中
    1. [1]

      (a) P.J. Murphy, Organophosphorus Reagents, OxfordUniv. Press, Oxford, 2004;
      (b) D.T. Kolio, Chemistry and Application of H-phosphonates, Elsevier Science, Oxford, 2006;
      (c) N.S. Li, J.K. Frederiksen, J.A. Piccirilli, Acc. Chem. Res. 44 (2011) 1257-1269;
      (d) H.H. Chen, L. Zhu, K.B. Zhong, et al., Chin. Chem. Lett. 29 (2018) 1237-1241.

    2. [2]

      (a) P.F. Jackson, K.L. Tays, K.M. Maclin, et al., J. Med. Chem. 44 (2001) 4170-4175;
      (b) R. Albert, K. Hinterding, V. Brinkmann, et al., J. Med. Chem. 48 (2005) 5373-5377;
      (c) S. Vassiliou, E.W. Tomczak, L. Berlicki, et al., J. Med. Chem. 57 (2014) 8140-8151;
      (d) Z. Novakova, K. Wozniak, A. Jancarik, et al., J. Med. Chem. 59 (2016) 4539-3550;
      (e) G.P. Horsman, D.L. Zechel, Chem. Rev. 117 (2017) 5704-5783.

    3. [3]

      (a) A.L. Schwan, Chem. Soc. Rev. 33 (2004) 218-224;
      (b) C.S. Demmer, N.K. Larsen, L. Bunch, Chem. Rev. 111 (2011) 7981-8006;
      (c) X.Q. Pan, J.P. Zou, W.B. Yi, W. Zhang, Tetrahedron 71 (2015) 7481-7529;
      (d) K. Luo, W.C. Yang, L. Wu, Asian J. Org. Chem. 6 (2017) 350-367;
      (e) B.G. Cai, J. Xuan, W.J. Xiao, Sci. Bull. 64 (2019) 337-350;
      (f) Y.L. Zhang, K. Sun, Q.Y. Lv, et al., Chin. Chem. Lett. 30 (2019) 1361-1368;
      (g) C.G. Feng, M. Ye, K.J. Xiao, S. Li, J.Q. Yu, J. Am. Chem. Soc. 135 (2013) 9322-9325;
      (h) Y.M. Li, M. Sun, H.L. Wang, Q.P. Tian, S.D. Yang, Angew. Chem. Int. Ed. 52 (2013) 3972-3976;
      (i) L.L. Liao, Y.Y. Gui, X.B. Zhang, D.G. Yu, Org. Lett. 19 (2017) 3735-3738;
      (j) Y.H. Li, Y.Y. Zhu, S.D. Yang, Org. Chem. Front. 5 (2018) 822-826;
      (k) C. Li, Z.C. Qi, Q. Yang, X.Y. Qiang, S.D. Yang, Chin. J. Chem. 36 (2018) 1052-1058;
      (l) R. Isshik, K. Muto, J. Yamaguchi, Org. Lett. 20 (2018) 1150-1153;
      (m) J. Yang, T.Q. Chen, L.B. Han, J. Am. Chem. Soc. 137 (2015) 1782-1785;
      (n) D.P. Hari, B. König, Org. Lett. 13 (2011) 3852-3855;
      (o) Y.L. Zhao, G.J. Wu, F.S. Han, Chem. Commun. 48 (2012) 5868-5870;
      (p) V. Qunit, F. Morlet-Savary, J.F. Lohier, et al., J. Am. Chem. Soc. 138 (2016) 7436-7441;
      (q) L.B. Niu, J.M. Liu, H. Yi, et al., ACS Catal. 7 (2017) 7412-7416;
      (r) L.B. Niu, H. Yi, S.C. Wang, et al., Chem. Commun. 54 (2018) 1659-1662;
      (s) C.H. Wang, Y.H. Li, S.D. Yang, Org. Lett. 20 (2018) 2382-2385;
      (t) Y.Y. Song, L.L. Wang, Z. Duan, F. Mathey, Chin. Chem. Lett. 31 (2020) 329-332;
      (u) Y.N. Ma, S.X. Li, S.D. Yang, Acc. Chem. Res. 50 (2017) 1480-1492.

    4. [4]

      X.Q. Chu, Y. Zi, H. Meng, X.P. Xu, S.J. Ji, Chem. Commun. 50 (2014) 7642-7645.  doi: 10.1039/c4cc02114b

    5. [5]

      X. Mi, C. Wang, M. Huang, Y. Wu, Y.J. Wu, Org. Biomol. Chem. 12 (2014) 8394-8397.  doi: 10.1039/C4OB01739K

    6. [6]

      Y. Yin, W.Z. Weng, J.G. Sun, B. Zhang, Org. Biomol. Chem.16 (2018) 2356-2361.  doi: 10.1039/C8OB00231B

    7. [7]

      X.Y. Yu, J.R. Chen, W.J. Xiao, et al., Angew. Chem. Int. Ed. 57 (2018) 738-743.  doi: 10.1002/anie.201710618

    8. [8]

      (a) J.M. Fan, C.F. Wan, Wang Q, et al., Org. Biomol. Chem. 7 (2009) 3168-3172;
      (b) F.F. Mo, L.J. Trzepkowski, G.B. Dong, Angew. Chem. Int. Ed. 51 (2012) 13075-13079;
      (c) Z. Zhang, C. Li, S.H. Wang, et al., Org. Biomol. Chem. 15 (2017) 3239-3247.

    9. [9]

      (a) J. Desroches, P.A. Champangne, Y. Behassine, J.K. Paguin, Org. Biomol. Chem. 13 (2015) 2243-2246;
      (b) T.W. Bevan, J.F. Taylor, H. Wong, D.T. Northcote, J.E. Harvey, Tetrahedron 74 (2018) 2942-2955.

    10. [10]

      (a) E.B. Jane, R.S. Davidson, Makromol. Chem. Rapid. Commun. 8 (1987) 311-314;
      (b) A.P. William, T.G. Jen, D.F. Church, J. Org. Chem. 50 (1985) 185-189.

  • 加载中
    1. [1]

      MA Yu-HuaAINIWA·MunireZHU En-QuanSU Zhi . Hierarchically Porous Nanosized Red Phosphorus with Enhanced Photo-Oxidation and Photo-Reduction Activities. Chinese Journal of Inorganic Chemistry, 2020, 36(5): 949-957. doi: 10.11862/CJIC.2020.106

    2. [2]

      Yang YuluTang YangJiang HaominChen YongmeiWan PingyuFan MaohongZhang RongrongUllah SanaPan LunZou Ji-JunLao MengmengSun WenpingYang ChaoZheng GengfengPeng QilingWang TingLuo YonglanSun XupingKonev Alexander S.Levin Oleg V.Lianos PanagiotisHu ZhuofengShen ZhuruiZhao QinglanWang YingTodorova NadiaTrapalis ChristosSheridan Matthew V.Wang HaipengZhang LingSun SongmeiWang WenzhongMa Jianmin . 2020 Roadmap on gas-involved photo-and electro-catalysis. Chinese Chemical Letters, 2019, 30(12): 2089-2109. doi: 10.1016/j.cclet.2019.10.041

    3. [3]

      Liang XU Guang Rong ZHENG Min XIA Jun Chao CAI . Synthesis of 2-methoxy-6-oxo-1,4,2-diazaphosphorinane-2-oxide, A New Potential Antitumor Phosphorus Heterocycle Compound. Chinese Chemical Letters, 2000, 11(8): 665-666.

    4. [4]

      Gui Yang XIE Jia Hua CHEN Shrong Shi LIN Sheng JIN . The Synthesis of a Novel Phosphorus Containing Antigen. Chinese Chemical Letters, 2001, 12(6): 497-498.

    5. [5]

      Hua Zheng YANG Rong Jian LU Zhen Feng SHANG . SYNTHESIS OF FUSED PHOSPHORUS HETEROCYCLIC COMPOUNDS(Ⅱ). Chinese Chemical Letters, 1995, 6(10): 851-852.

    6. [6]

      Pei Ming Gu Yu Ming Zhao Yong Qiang Tu Min Wang Shu Yu Zhang . An alternative synthetic approach towards erythrinan and homoerythrinan alkaloids by tandem semipinacol/intramolecular Schmidt reaction. Chinese Chemical Letters, 2007, 18(8): 917-919. doi: 10.1016/j.cclet.2007.05.029

    7. [7]

      Ming Bao HUANG . THE 4Σ- STATES OF THE FO RADICAL. Chinese Chemical Letters, 1996, 7(5): 475-478.

    8. [8]

      Shi Zhi CHEN Ming GUO Kai Rong CUI and Liang HUANG . A NOVEL FREE RADICAL REARRANGEMENT. Chinese Chemical Letters, 1992, 3(4): 257-258.

    9. [9]

      Yong JU Yi CHEN Yu Fen ZHAO . Differentiation Effect of Pentacoordinate Phosphorus on Carbohydrate Reaction. Chinese Chemical Letters, 1999, 10(5): 387-388.

    10. [10]

      Ru Yu CHEN Lun Zu LIU Zhong Biao ZHANG . STUDY ON NEW PHOSPHORUS-GERMANIUM COMPOUNDS. Chinese Chemical Letters, 1995, 6(10): 855-856.

    11. [11]

      Huang WeixinWu ZiliTang JunwangWei Wei DavidGuo Xuefeng . Surface chemistry connecting heterogeneous catalysis, photocatalysis and plasmonic catalysis. Chinese Chemical Letters, 2018, 29(6): 725-726. doi: 10.1016/j.cclet.2018.05.021

    12. [12]

      Can LiTao Zhang . A Year of Innovation for Chinese Journal of Catalysis. Chinese Journal of Catalysis, 2015, 36(1): 1-1. doi: 10.1016/S1872-2067(14)60260-6

    13. [13]

      Dr. Dangsheng Su . Preface to Special Issue on Carbon in Catalysis. Chinese Journal of Catalysis, 2014, 35(6): 777-777. doi: 10.1016/S1872-2067(14)60142-X

    14. [14]

      Qiang FuXinhe Bao . Catalysis on a metal surface with a graphitic cover. Chinese Journal of Catalysis, 2015, 36(4): 517-519. doi: 10.1016/S1872-2067(15)60828-2

    15. [15]

      Da Wei GUO Xiao Zhen YANG . Molecular Mechanics Study on Asymmetry Catalysis. Chinese Chemical Letters, 1999, 10(9): 751-754.

    16. [16]

      Zhang RuipuLuo Sanzhong . Bio-inspired quinone catalysis. Chinese Chemical Letters, 2018, 29(8): 1193-1200. doi: 10.1016/j.cclet.2018.02.009

    17. [17]

      Kai WangaShuai-Hua SongYun-Man ZhengZao-Ying Li . Morphological characterization of amidinophenylporphyrins interacting with DNA by photo irradiation. Chinese Chemical Letters, 2013, 24(11): 1011-1013.

    18. [18]

      Hao YuweiMeng JingxinWang Shutao . Photo-responsive polymer materials for biological applications. Chinese Chemical Letters, 2017, 28(11): 2085-2091. doi: 10.1016/j.cclet.2017.10.019

    19. [19]

      Li HuiboChen ChangmaiAn QinHuo GuoyanRun Mingtao . Photo-responsive nanoparticles for β-lapachone delivery in vitro. Chinese Chemical Letters, 2018, 29(9): 1347-1349. doi: 10.1016/j.cclet.2017.11.025

    20. [20]

      Yan Fen Fang An Ping Deng Ying Ping Huang . Determination of hydroxyl radical in Fenton system. Chinese Chemical Letters, 2009, 20(10): 235-1240. doi: 10.1016/j.cclet.2009.05.004

Metrics
  • PDF Downloads(2)
  • Abstract views(94)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return