Citation: Sheng Wanle, Lv Fan, Tang Bing, Hao Erhong, Jiao Lijuan. Toward the most versatile fluorophore: Direct functionalization of BODIPY dyes via regioselective C-H bond activation[J]. Chinese Chemical Letters, ;2019, 30(10): 1825-1833. doi: 10.1016/j.cclet.2019.08.004 shu

Toward the most versatile fluorophore: Direct functionalization of BODIPY dyes via regioselective C-H bond activation


  • Author Bio:



    Prof. Lijuan Jiao received her Bachelor’s degree (2000) from Shandong University, China, and obtained her Master’s degree (2003) under the supervision of Prof. Guanwu Wang at University of Science and Technology of China (USTC). She then moved to Louisiana State University, U. S. A., and obtained her Ph.D. (2007) under the supervision of Prof. Kevin M. Smith. She joined Anhui Normal University in 2008, and became a full professor (2010) at College of Chemistry and Materials Science. Her researchfocuses on the developmentof novel BODIPYand porphyrin related dyes, understanding their photophysical properties and studying their optoelectrical and biological applications. She received a SPP/JPP Young Investigator Award for her research in BODIPY chemistry in 2016
  • * Corresponding authors.
    E-mail addresses: haoehong@ahnu.edu.cn (E. Hao), jiao421@ahnu.edu.cn (L. Jiao)
  • Received Date: 3 July 2019
    Revised Date: 5 August 2019
    Accepted Date: 5 August 2019
    Available Online: 6 October 2019

Figures(31)

  • Fluorescent dyes are heavily sought for their potentials applications in bioimaging, sensing, theranostic, and optoelectronic materials. Among them, BODIPY dyes are privileged fluorophores that are now widely used in highly diverse research fields. The increasing success of BODIPY dyes is closely associated with their excellent and tunable photophysical properties due to their rich functionalization chemistry. Recently, growing research efforts have been devoted to the direct functionalization of the BODIPY core, because it allows the facile installation of desired functional groups in a single atom economical step. The challenges of this direct C-H derivation come from the difficulties in finding suitable functionalization agents and proper control of the regioselectivity of the functionalization. The aim of this work is to provide an overview of BODIPY dyes and a summarization of the different synthetic methodologies reported for direct C-H functionalization of the BODIPY framework.
  • 加载中
    1. [1]

      (a) Z. Lei, X. Li, X. Luo, et al., Angew. Chem. Int. Ed. 56 (2017) 2979-2983;
      (b) J. Zhu, P. Jia, N. Li, et al., Chin. Chem. Lett. 29 (2018) 1445-1450;
      (c) L. Li, Y. Chen, W. Chen, et al., Chin. Chem. Lett. (2019), doi: http://dx.doi.org/10.1016/j.cclet.2019.04.017;
      (d) X. Luo, J. Li, J. Zhao, et al., Chin. Chem. Lett. 30 (2019) 839-846;
      (e) D. Yue, M. Wang, F. Deng, et al., Chin. Chem. Lett. 29 (2018) 648-656.

    2. [2]

      (a) A. Loudet, K. Burgess, Chem. Rev. 107 (2007) 4891-4932;
      (b) G. Ulrich, R. Ziessel, A. Harriman, Angew. Chem. Int. Ed. 47 (2008) 1184-1201.

    3. [3]

      (a) H. Lu, J. Mack, T. Nyokong, et al., Coord. Chem. Rev. 318 (2016) 1-15;
      (b) S. Kolemen, E.U. Akkaya, Coord. Chem. Rev. 354 (2018) 121-134;
      (c) J. Zhao, K. Xu, W. Yang, et al., Chem. Soc. Rev. 44 (2015) 8904-8939;
      (d) T. Kowada, H. Maeda, K. Kikuchi, Chem. Soc. Rev. 44 (2015) 4953-4972.

    4. [4]

      (a) A. Tursoy, D. Yildiz, E.U. Akkaya, Coord. Chem. Rev. 379 (2019) 47-64;
      (b) L. Ding, Z. Tian, J. Hou, et al., Chin. Chem. Lett. 30 (2019) 558-562.

    5. [5]

      A. Treibs, F.H. Kreuzer, Liebigs Ann. Chem. 718(1968) 208-223.  doi: 10.1002/jlac.19687180119

    6. [6]

      (a) C. Yu, L. Jiao, T. Li, et al., Chem. Commun. 51 (2015) 16852-16855;
      (b) J. Wang, Q. Wu, S. Wu, et al., Org. Lett. 17 (2015) 5360-5363;
      (c) C. Yu, Q. Wu, J. Wang, et al., J. Org. Chem. 81 (2016) 3761-3770;
      (d) N. Chen, W. Zhang, S. Chen, et al., Org. Lett. 19 (2017) 2026-2029.

    7. [7]

      I.J. Arroyo, R. Hu, G. Merino, et al., J. Org. Chem. 74(2009) 5719-5722.  doi: 10.1021/jo901014w

    8. [8]

      N. Boens, V. Leen, W. Dehaen, Chem. Soc. Rev. 41(2012) 1130-1172.  doi: 10.1039/C1CS15132K

    9. [9]

      T. Ueno, Y. Urano, H. Kojima, et al., J. Am. Chem. Soc.128(2006) 10640-10641.  doi: 10.1021/ja061972v

    10. [10]

      Y. Gabe, Y. Urano, K. Kikuchi, et al., J. Am. Chem. Soc. 126(2004) 3357-3367.  doi: 10.1021/ja037944j

    11. [11]

      (a) H. Yu, Y. Xiao, L. Jin, J. Am. Chem. Soc. 134 (2012) 17486-17489;
      (b) C. Yu, Z. Huang, W. Gu, et al., Mater. Chem. Front. 3 (2019) 1823-1832.

    12. [12]

      (a) H. Lu, J. Mack, Y. Yang, Z. Shen, Chem. Soc. Rev. 43 (2014) 4778-4832;
      (b) Y. Ni, J. Wu, Org. Biomol. Chem. 12 (2014) 3774-3791.

    13. [13]

      N. Boens, B. Verbelen, W. Dehean, Eur. J. Org. Chem. 2015(2015) 6577-6595.  doi: 10.1002/ejoc.201500682

    14. [14]

      S. Xuan, N. Zhao, X. Ke, et al., J. Org. Chem. 82(2017) 2545-2557.  doi: 10.1021/acs.joc.6b02941

    15. [15]

      (a) W. Sheng, J. Cui, Z. Ruan, et al., J. Org. Chem. 82 (2017) 10341-10349;
      (b) W. Sheng, Y. Zheng, Q. Wu, et al., Org. Lett. 19 (2017) 2893-2896;
      (c) W. Sheng, Y. Wu, C. Yu, et al., Org. Lett. 20 (2018) 2620-2623;
      (d) J. Cui, W. Sheng, Q. Wu, et al., Chem.-Asian J. 12 (2017) 2486-2493;
      (e) J. Wang, Q. Wu, S. Wang, et al., Org. Lett. 17 (2015) 5360-5363;
      (f) C. Yu, L. Jiao, T. Li, et al., Chem. Commun. 51 (2015) 16852-16855;
      (g) Y. Sun, Z. Qu, Z. Zhou, et al., Org. Biomol. Chem. 17 (2019) 3617-3622;
      (h) Z. Zhou, J. Zhou, L. Gai, et al., Chem. Commun. 53 (2017) 6621-6624.

    16. [16]

      (a) Z. Li, E. Mintzer, R. Bittman, J. Org. Chem. 71 (2006) 1718-1721;
      (b) M. Zhang, E. Hao, Y. Xu, et al., RSC Adv. 2 (2012) 11215-11218.

    17. [17]

      R.W. Wagner, J.S. Lindsey, Pure Appl. Chem. 68(1996) 1373-1380.  doi: 10.1351/pac199668071373

    18. [18]

      L. Wu, K. Burgess, Chem. Commun. (2008) 4933-4935.

    19. [19]

      L. Jiao, C. Yu, M. Liu, et al., J. Org. Chem. 75(2010) 6035-6038.  doi: 10.1021/jo101164a

    20. [20]

      (a) P. Thamyongki, A.D. Bhise, M. Taniguchi, et al., J. Org. Chem. 71 (2006) 903-910;
      (b) L. Jiao, C. Yu, T. Uppal, et al., Org. Biomol. Chem. 8 (2010) 2517-2519;
      (c) Z. Wang, C. Cheng, Z. Kang, J. Org. Chem. 84 (2019) 2732-2740.

    21. [21]

      C. Yu, L. Jiao, H. Yin, et al., Eur. J. Org. Chem 2011(2011) 5460-5468.  doi: 10.1002/ejoc.201100736

    22. [22]

      V. Lakshmi, M.R. Rao, M. Ravikanth, Org. Biomol. Chem. 13(2015) 2501-2517.  doi: 10.1039/C4OB02293A

    23. [23]

      (a) L. Jiao, W. Pang, J. Zhou, et al., J. Org. Chem. 76 (2011) 9988-9996;
      (b) L. Jiao, J. Li, S. Zhang, et al., New J. Chem. 33 (2009) 1888-1893;
      (c) X. Zhou, C. Yu, Z. Feng, et al., Org. Lett. 17 (2015) 4632-4635.

    24. [24]

      T.V. Goud, A. Tutar, J.F. Biellmann, Tetrahedron 62(2006) 5084-5091.  doi: 10.1016/j.tet.2006.03.036

    25. [25]

      J. Han, O. Gonzalez, A. Aguilar-Aguilar, et al., Org. Biomol. Chem. 7(2009) 34-36.  doi: 10.1039/B818390B

    26. [26]

      (a) T. Jiang, P. Zhang, C. Yu, et al., Org. Lett. 16 (2014) 1952-1955;
      (b) J. Li, Q. Zhang, J. Yin, et al., Org. Lett. 18 (2016) 5696-5699;
      (c) X. Zhou, Q. Wu, Y. Feng, et al., Chem.-Asian J. 10 (2015) 1979-1986;
      (d) W. Miao, E. Dai, W. Sheng, et al., Org. Lett. 19 (2017) 6244-6247.

    27. [27]

      (a) Z. Feng, L. Jiao, Y. Feng, et al., J. Org. Chem. 81 (2016) 6281-6291;
      (b) X. Zheng, W. Du, L. Gai, et al., Chem. Commun. 24 (2018) 8834-8837.

    28. [28]

      E. Palao, A.R. Agarrabetia, M.J. Ortiz, Org. Lett. 15(2013) 4454-4457.  doi: 10.1021/ol401993p

    29. [29]

      (a) L. Jiao, C. Yu, J. Li, et al., J. Org. Chem. 74 (2009) 7525-7528;
      (b) J. Wang, Y. Wu, W. Sheng, et al., ACS Omega 2 (2017) 2568-2576.

    30. [30]

      (a) A. Haefele, C. Zedde, P. Retailleau, et al., Org. Lett. 12 (2010) 1671-1675;
      (b) M. Zhang, Y. Wu, S. Zhang, et al., Chem. Comm. 48 (2012) 8925-8927.

    31. [31]

      V. Leen, V. Zaragozí Gonzalvo, W.M. Deborggraeve, et al., Chem. Commun. 46(2010) 4908-4910.  doi: 10.1039/c0cc00568a

    32. [32]

      V. Leen, M. van der Auweraer, N. Boens, W. Dehaen, Org. Lett. 13(2011) 1470-1473.  doi: 10.1021/ol200148u

    33. [33]

      M. Zhang, E. Hao, J. Zhou, et al., Org. Biomol. Chem. 10(2012) 2139-2145.  doi: 10.1039/c2ob06689k

    34. [34]

      B. Verbelen, S. Boodts, J. Hofkens, et al., Angew. Chem. Int. Ed. 54(2015) 4612-4616.  doi: 10.1002/anie.201410853

    35. [35]

      X. Zhou, Q. Wu, Y. Yu, et al., Org. Lett. 18(2016) 736-739.  doi: 10.1021/acs.orglett.5b03706

    36. [36]

      D. Wang, C. Cheng, Q. Wu, et al., Org. Lett. 21(2019) 5121-5125.  doi: 10.1021/acs.orglett.9b01722

    37. [37]

      B. Verbelen, L. Cunha Dias Rezende, S. Boodts, et al., Chem.-Eur. J. 21(2015) 12667-12675.  doi: 10.1002/chem.201500938

    38. [38]

      B. Tang, F. Lv, K. Chen, et al., Chem. Commun. 55(2019) 4691-4694.  doi: 10.1039/C9CC01602C

    39. [39]

      Y. Yu, L. Jiao, J. Wang, et al., Chem. Commun. 53(2017) 581-584.  doi: 10.1039/C6CC08098G

    40. [40]

      F. Lv, Y. Yu, E. Hao, et al., Org. Biomol. Chem. 17(2019) 5121-5128.  doi: 10.1039/C9OB00927B

    41. [41]

      F. Lv, Y. Yu, E. Hao, et al., Chem. Commun. 54(2018) 9059-9062.  doi: 10.1039/C8CC04679D

    42. [42]

      H. Zhang, X. Chen, J. Lan, et al., Chem. Commun. 54(2018) 3219-3222.  doi: 10.1039/C8CC00238J

    43. [43]

      V. Leen, P. Yuan, L. Wang, et al., Org. Lett. 14(2012) 6150-6153.  doi: 10.1021/ol3028225

    44. [44]

      F. Lv, B. Tang, E. Hao, et al., Chem. Commun. 55(2019) 1639-1642.  doi: 10.1039/C8CC09821B

    45. [45]

      F. Ma, L. Zhou, Q. Liu, et al., Org. Lett. 21(2019) 733-736.  doi: 10.1021/acs.orglett.8b03954

    46. [46]

      (a) C. Thivierge, R. Bandichhor, K. Burgess, Org. Lett. 9 (2007) 2135-2138;
      (b) J. Chen, M. Mizumura, H. Shinokubo, A. Osuka, Chem.-Eur. J. 15 (2009) 5942-5949;
      (c) D.K. K ölmel, A. Hcrner, J.A. Castaneda, et al., J. Phys. Chem. C 120 (2016) 4538-4545;
      (d) W. Ren, H. Xiang, C. Peng, et al., RSC Adv. 8 (2018) 5542-5549;
      (e) R. Jiang, X. Yang, D. Wu, Org. Biomol. Chem. 15 (2017) 6888-6891.

    47. [47]

      B. Verbelen, V. Leen, L. Wang, et al., Chem. Commun. 48(2012) 9129-9131.  doi: 10.1039/c2cc34549h

    48. [48]

      L. Luo, D. Wu, W. Li, et al., Org. Lett. 16(2014) 6080-6083.  doi: 10.1021/ol502883x

    49. [49]

      (a) J. Wang, Q. Wu, Q. Gong, et al., Adv. Synth. Catal. 361 (2019) 769-777;
      (b) J. Wang, Y. li, Q. Gong, et al., J. Org. Chem. 84 (2019) 5079-5090.

    50. [50]

      X. Yang, L. Jiang, M. Yang, et al., J. Org. Chem. 83(2018) 9538-9546.  doi: 10.1021/acs.joc.8b01239

    51. [51]

      W. Miao, Y. Feng, Q. Wu, et al., J. Org. Chem. 84(2019) 9693-9704.  doi: 10.1021/acs.joc.9b01425

  • 加载中
    1. [1]

      Chao ChenWenwen YuGuangen HuangXuelian RenXiangli ChenYixin LiShenggui LiangMengmeng XuMingyue ZhengYaxi YangHe HuangWei TangBing Zhou . Asymmetric macrocyclization enabled by Rh(Ⅲ)-catalyzed CH activation: Enantioenriched macrocyclic inhibitor of Zika virus infection. Chinese Chemical Letters, 2024, 35(11): 109574-. doi: 10.1016/j.cclet.2024.109574

    2. [2]

      Beitong ZhuXiaorui YangLirong JiangTianhong ChenShuangfei WangLintao Zeng . A portable and versatile fluorescent platform for high-throughput screening of toxic phosgene, diethyl chlorophosphate and volatile acyl chlorides. Chinese Chemical Letters, 2025, 36(1): 110222-. doi: 10.1016/j.cclet.2024.110222

    3. [3]

      Qihang WuHui WenWenhai LinTingting SunZhigang Xie . Alkyl chain engineering of boron dipyrromethenes for efficient photodynamic antibacterial treatment. Chinese Chemical Letters, 2024, 35(12): 109692-. doi: 10.1016/j.cclet.2024.109692

    4. [4]

      Wei Huang Weiwei Chen Yongxing Tang . Green Mountains and Blue Waters Spanning Nine Centuries: Decrypting “The Picture of a Thousand Miles of Rivers and Mountains” from a Chemical Perspective. University Chemistry, 2024, 39(9): 189-195. doi: 10.12461/PKU.DXHX202312075

    5. [5]

      Xiao-Tong Sun Hao-Fei Ni Yi Zhang Da-Wei Fu . Hybrid perovskite shows temperature-dependent photoluminescence and dielectric response triggered by halogen substitution. Chinese Journal of Structural Chemistry, 2024, 43(6): 100212-100212. doi: 10.1016/j.cjsc.2023.100212

    6. [6]

      Jindian DuanXiaojuan DingPui Ying ChoyBinyan XuLuchao LiHong QinZheng FangFuk Yee KwongKai Guo . Oxidative spirolactonisation for modular access of γ-spirolactones via a radical tandem annulation pathway. Chinese Chemical Letters, 2024, 35(10): 109565-. doi: 10.1016/j.cclet.2024.109565

    7. [7]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

    8. [8]

      Hongzhi Zhang Hong Li Asif Ali Haider Junpeng Li Zhi Xie Hongming Jiang Conglin Liu Rui Wang Jing Zhu . An unexpected role of lanthanide substitution in thermally responsive phosphors NaLnTe2O7: Eu3+ (Ln = Y and Gd). Chinese Journal of Structural Chemistry, 2025, 44(2): 100509-100509. doi: 10.1016/j.cjsc.2024.100509

    9. [9]

      Peng WangJianjun WangNi SongXin ZhouMing Li . Radical dehydroxymethylative fluorination of aliphatic primary alcohols and diverse functionalization of α-fluoroimides via BF3·OEt2-catalyzed C‒F bond activation. Chinese Chemical Letters, 2025, 36(1): 109748-. doi: 10.1016/j.cclet.2024.109748

    10. [10]

      Zhirong YangShan WangMing JiangGengchen LiLong LiFangzhi PengZhihui Shao . One stone three birds: Ni-catalyzed asymmetric allenylic substitution of allenic ethers, hydroalkylation of 1,3-enynes and double alkylation of enynyl ethers. Chinese Chemical Letters, 2024, 35(8): 109518-. doi: 10.1016/j.cclet.2024.109518

    11. [11]

      Guangchang YangShenglong YangJinlian YuYishun XieChunlei TanFeiyan LaiQianqian JinHongqiang WangXiaohui Zhang . Regulating local chemical environment in O3-type layered sodium oxides by dual-site Mg2+/B3+ substitution achieves durable and high-rate cathode. Chinese Chemical Letters, 2024, 35(9): 109722-. doi: 10.1016/j.cclet.2024.109722

    12. [12]

      Yuqing WangZhemin LiQingjun LuQizhao LiJiaxin LuoChengjie LiYongshu Xie . Solar cells based on doubly concerted companion dyes with the efficiencies modulated by inserting an ethynyl group at different positions. Chinese Chemical Letters, 2024, 35(5): 109093-. doi: 10.1016/j.cclet.2023.109093

    13. [13]

      Supphachok ChanmungkalakulSyed Ali Abbas AbediFederico J. HernándezJianwei XuXiaogang Liu . The dark side of cyclooctatetraene (COT): Photophysics in the singlet states of “self-healing” dyes. Chinese Chemical Letters, 2024, 35(8): 109227-. doi: 10.1016/j.cclet.2023.109227

    14. [14]

      Yongkang YueZhou XuKaiqing MaFangjun HuoXuemei QinKuanshou ZhangCaixia Yin . HSA shrinkage optimizes the photostability of embedded dyes fundamentally to amplify their efficiency as photothermal materials. Chinese Chemical Letters, 2024, 35(8): 109223-. doi: 10.1016/j.cclet.2023.109223

    15. [15]

      Muhammad Riaz Rakesh Kumar Gupta Di Sun Mohammad Azam Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427

    16. [16]

      Tianze WangJunyi RenDongxiang ZhangHuan WangJianjun DuXin-Dong JiangGuiling Wang . Development of functional dye with redshifted absorption based on Knoevenagel condensation at 1-site in phenyl[b]-fused BODIPY. Chinese Chemical Letters, 2024, 35(6): 108862-. doi: 10.1016/j.cclet.2023.108862

    17. [17]

      Wenjuan JinZelong ChenYi WangJiaxuan LiJiahui LiYuxin PeiZhichao Pei . Nano metal-photosensitizer based on Aza-BODIPY-Cu complex for CDT-enhanced dual phototherapy. Chinese Chemical Letters, 2024, 35(7): 109328-. doi: 10.1016/j.cclet.2023.109328

    18. [18]

      Lulu CaoYikun LiDongxiang ZhangShuai YueRong ShangXin-Dong JiangJianjun Du . Engineering aggregates of julolidine-substituted aza-BODIPY nanoparticles for NIR-II photothermal therapy. Chinese Chemical Letters, 2024, 35(12): 109735-. doi: 10.1016/j.cclet.2024.109735

    19. [19]

      Jingtai BiYupeng ChengMengmeng SunXiaofu GuoShizhao WangYingying Zhao . Efficient and selective photocatalytic nitrite reduction to N2 through CO2 anion radical by eco-friendly tartaric acid activation. Chinese Chemical Letters, 2024, 35(11): 109639-. doi: 10.1016/j.cclet.2024.109639

    20. [20]

      Leichen WangAnqing MeiNa LiXiaohong RuanXu SunYu CaiJinjun ShaoXiaochen Dong . Aza-BODIPY dye with unexpected bromination and high singlet oxygen quantum yield for photoacoustic imaging-guided synergetic photodynamic/photothermal therapy. Chinese Chemical Letters, 2024, 35(6): 108974-. doi: 10.1016/j.cclet.2023.108974

Metrics
  • PDF Downloads(36)
  • Abstract views(1891)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return