Citation: Zheng Dan, Yu Chengyuan, Zheng Lu, Zhan Yulin, Jiang Hua. Absolute control of helicity at the C-termini in quinoline oligoamide foldamers by chiral oxazolylaniline moieties[J]. Chinese Chemical Letters, ;2020, 31(3): 673-676. doi: 10.1016/j.cclet.2019.07.061 shu

Absolute control of helicity at the C-termini in quinoline oligoamide foldamers by chiral oxazolylaniline moieties

    * Corresponding author.
    E-mail address: jiangh@bnu.edu.cn (H. Jiang).
  • Received Date: 6 July 2019
    Revised Date: 21 July 2019
    Accepted Date: 21 July 2019
    Available Online: 1 March 2020

Figures(5)

  • Absolute one-handed chiral quinoline tetramers andoctamers containing different oxazolylanilines at the C-terminus have been synthesized. The absolute one-handed sense and diastereomeric excess values were valued by 1H NMR. X-ray crystal diffractionand CD studies reveal that the S-oxazolylaniline always induces a P-handed helicity and the absolute helicity is driven by the stable three-center hydrogen bonding between protons in the amide and N atoms in oxazolylaniline and adjacent quinoline ring. CPL investigations demonstrated that S-CQn-a~d are CPL active and its glum values are dependent on its length. Interestingly, the sizes of the substituents in the chiral centers are different, however, they exert no effect on the dissymmetric factors gabs and glum of quinoline oligoamide foldamers.
  • 加载中
    1. [1]

      L. Pauling, R.B. Corbey, H.R. Branson, Natl. Acad. Sci. U. S. A. 378 (1951) 205-211.
       

    2. [2]

      J.D. Watson, F.H.C. Crick, Nature 171 (1953) 737-738.  doi: 10.1038/171737a0

    3. [3]

      (a) Z.T. Li, J.L. Hou, C. Li, H.P. Yi, Chem. -Asian J. 1 (2006) 766-778;
      (b) D.W. Zhang, X. Zhao, J.L. Hou, Z.T. Li, Chem. Rev. 112 (2012) 5271-5316.

    4. [4]

      (a) H. Jiang, C. Dolain, J.M. Leger, et al., J. Am. Chem. Soc. 126 (2004) 1034-1035;
      (b) C. Dolain, H. Jiang, J.M. Leger, I. Huc, J. Am. Chem. Soc. 127 (2005) 12943-12951;
      (c) F.S. Bie, Y. Wang, J. Shang, et al., Eur. J. Org. Chem. 8 (2013) 8135-8144;
      (d) H. Jiang, Q.L. Li, G.X. Wang, Chin. J. Org. Chem. 38 (2018) 1065-1084.

    5. [5]

      C. Li, G.T. Wang, H.P. Yi, et al., Org. Lett. 9 (2007) 1797-1800.  doi: 10.1021/ol070492l

    6. [6]

      (a) A.M. Kendhale, L. Poniman, Z.Y. Dong, et al., J. Org. Chem. 76 (2011) 195-200;
      (b) Y. Ferrand, A.M. Kendhale, B. Kauffmann, et al., J. Am. Chem. Soc. 132 (2010) 7858-7859;
      (c) L. Zheng, Y.L. Zhan, C.Y. Yu, et al., Org. Lett. 19 (2017) 1482-1485;
      (d) H.Y. Hu, J.F. Xiang, Y. Yang, C.F. Chen, Org. Lett. 10 (2008) 1275-1278.

    7. [7]

      I. Huc, H. Jiang, Organic foldamers and helices, in: J.W. Steed, P.A. Gale (Eds.), Supramolecular Chemistry: From Molecules to Nanomaterials, John Wiley & Sons Ltd, Chichester, 2012, pp. 2183-2206.

    8. [8]

      (a) N. Tamaoki, M. Wada, J. Am. Chem. Soc. 128 (2006) 6284-6285;
      (b) L.B. Wang, L. Yin, W. Zhang, et al., J. Am. Chem. Soc. 139 (2017) 13218-13226;
      (c) G. Yang, L. Zhu, J. Hu, et al., Chem. -Eur. J. 23 (2017) 8032-8038;
      (d) Y. Lu, L.L. Zhu, Chin. Chem. Lett. 29 (2018) 1591-1600.

    9. [9]

      (a) C.S. Wang, H.S. Fei, Y. Qiu, et al., Appl. Phys. Lett. 74 (1999) 18-21;
      (b) A. Natansohn, P. Rochon, Chem. Rev. 102 (2002) 4139-4175;
      (c) D. Sankar, P.K. Palanisamy, S. Manickasundaram, P. Kannan, Opt. Mater. (Amst) 28 (2005) 1101-1107.

    10. [10]

      J. Jimenez, L. Cerdan, F. Moreno, et al., J. Phys. Chem. C 121 (2017) 5287-5292.  doi: 10.1021/acs.jpcc.7b00654

    11. [11]

      L. Zheng, C.Y. Yu, Y.L. Zhan, et al., Chem. -Eur. J. 23 (2017) 5361-5367.  doi: 10.1002/chem.201700134

    12. [12]

      D. Zheng, L. Zheng, C.Y. Yu, et al., Org. Lett. 21 (2019) 2555-2559.  doi: 10.1021/acs.orglett.9b00450

    13. [13]

      M. Luo, Curr. Org. Synth. 12 (2015) 660-672.  doi: 10.2174/157017941205150821153905

    14. [14]

      H. Jiang, J.M. Leger, C. Dolain, et al., Tetrahedron 59 (2003) 8365-8374.  doi: 10.1016/j.tet.2003.08.058

    15. [15]

      (a) J.P. Riehl, F.S. Richardson, Chem. Rev. 86 (1986) 1-16;
      (b) H. Anetai, T. Takeda, N. Hoshino, et al., J. Phys. Chem. C 122 (2018) 6323-6331.

    16. [16]

      (a) E.M. Sanchez-Carnerero, A.R. Agarrabeitia, F. Moreno, et al., Chem. -Eur. J. 21 (2015) 13488-13500;
      (b) H. Maeda, Y. Bando, K. Shimomura, et al., J. Am. Chem. Soc. 133 (2011) 9266-9269;
      (c) C.M. Cruz, S. Castro Fernandez, E. Macoas, et al., Angew. Chem. Int. Ed. 57 (2018) 14782-14786.

  • 加载中
    1. [1]

      Li JingchenGuan AijiaoXiang JunfengZhang EnxuanLi QianQi WeiSun HongxiaTang Yalin . Conformational Regulation Effect on Methylazacalix[6]pyridine by HT G-Quadruplex. Chemistry, 2018, 81(9): 828-833.

    2. [2]

      Guo Bin HUANG Gan Feng CAO Ke Mei WU Liang HUANG . Intramolecular Induction of Asymmetric Darzen's Condensation of Aldehydes with Chiral α-Chloroacetates. Chinese Chemical Letters, 1999, 10(6): 441-442.

    3. [3]

      Bing DENG Xiu Lin YE Qi Yi XING . STUDIES ON THE RELATIONSHIP BETWEEN THE HELICAL STRUCTURE AND OPTICAL ACTIVITIES OF SOME CHIRAL CYCLICESTERS Ⅰ. Chinese Chemical Letters, 1996, 7(7): 627-630.

    4. [4]

      Kai Jun LUO Ming Gui XIE Qing JIANG . Circularly Polarized Absorption Property of Tetra-4[4'-(2-methylbutoxy)benzoyloxy]phenyl Porphyrin by Introducing Optical Pendant Groups. Chinese Chemical Letters, 2003, 14(11): 1196-1198.

    5. [5]

      Bahareh Tamaddoni JahromiAli Nemati KharatSara Zamanian . Chiral electron deficient ruthenium helical coordination polymer as a catalyst for the epoxidation of substituted styrenes. Chinese Chemical Letters, 2015, 26(1): 137-140. doi: 10.1016/j.cclet.2014.10.013

    6. [6]

      Hai Quan Zhang Wen Ke Liu Li Cheng Zhao Wei Huang Shuai Zhang Ying Li Huai Yang . Helical twisting properties of new chiral dopants with double (S)-1,2-propanediol units for nematic liquid crystals. Chinese Chemical Letters, 2010, 21(2): 139-142. doi: 10.1016/j.cclet.2009.09.007

    7. [7]

      Wei Huang Yu Bo Cao Xiao Guang Zhang Fa Sheng Li Huai Yang . Synthesis and helical twisting property of polymerizable chiral dopant with temperature-dependent solubility in liquid crystal. Chinese Chemical Letters, 2009, 20(7): 873-876. doi: 10.1016/j.cclet.2009.03.019

    8. [8]

      Wei Huang Xiao Guang Zhang Guang Da Yang Zhen Yu Bian Xiao Juan Wu Guo Jing Ma Qi Huang Huai Yang . Influence of terminal alkyl chain length on helical twisting property of chiral 1,2-propanediol derivatives. Chinese Chemical Letters, 2009, 20(12): 1435-1438. doi: 10.1016/j.cclet.2009.06.016

    9. [9]

      Ai Hua NIE Xiu Lin YE Qi Yi XING . Studies on the Relationship between the Helical Structure and Optical Activity of Some Chiral Cyclic Esters Ⅱ. Chinese Chemical Letters, 1997, 8(2): 141-144.

    10. [10]

      Zhen QIAO Xue Yan SHI Qing Hua BIAN Shi Cong HOU Min WANG . Asymmetric Induction of Chiral 1,1'-Bis (oxazolinyl) ferrocenes as Ligands in Metal-Catalyzed Cyclopropanation and Diels-Alder Reactions. Chinese Chemical Letters, 2004, 15(9): 1015-1018.

    11. [11]

      Qing Fang CHENG Xing You XU Ming Yan WANG Jun CHEN Wei Xing MA Xu Jie YANG . Enantioselective Pinacol Coupling of Aromatic Aldehydes Induced by Chiral Titanium Complexes. Chinese Chemical Letters, 2006, 17(7): 887-890.

    12. [12]

      Hai Quan Zhang An Lei Qin . Tuning the helical twisting power of nematic liquid crystals induced by chiral 1, 2-propanediol derivatives using varied substituents. Chinese Chemical Letters, 2012, 23(1): 37-40. doi: 10.1016/j.cclet.2011.09.019

    13. [13]

      Wu QiongyouZhang RuiPan JinhuanClough JohnGu YuchengYang Guangfu . Design and Synthesis of Natural Product Mevalocidin Chiral Center Based Analogues. Chinese Journal of Organic Chemistry, 2018, 38(4): 840-845. doi: 10.6023/cjoc201710023

    14. [14]

      Xiao Yan ZHANG Xin GAO Yan LI Xiao Dong FAN . Metallothionein Induction by Cd(Ⅱ) and Zn(Ⅱ). Chinese Chemical Letters, 2006, 17(2): 269-272.

    15. [15]

      Yu Ming Cui Lai Lai Wang Fuk Yee Kwong Wei Sun . Asymmetric hydrogenation of aromatic ketones using new chiral-bridged diphosphine/diamine-Ru (Ⅱ) complexes. Chinese Chemical Letters, 2010, 21(12): 1403-1406. doi: 10.1016/j.cclet.2010.05.027

    16. [16]

      Xiao Xiang Zhao Zhi Gang Zhao Xing Li Liu Xiu Ming Wu . Rapid and efficient synthesis of new chiral aromatic amide molecular tweezers under solvent-free conditions using microwave. Chinese Chemical Letters, 2009, 20(4): 397-400. doi: 10.1016/j.cclet.2008.11.023

    17. [17]

      Meng TaoFang WuTeng LiYan-Yun LiJing-Xing Gao . Novel chiral multidentate P3N4-type ligand for asymmetric transfer hydrogenation of aromatic ketones. Chinese Chemical Letters, 2017, 28(1): 97-100. doi: 10.1016/j.cclet.2016.05.028

    18. [18]

      Jian Wen Fang Zu Yi LI . Chemo-Enzymic Synthesis of a Four-Chiral-Center Portion of A-23187 (Calcimycin). Chinese Chemical Letters, 1997, 8(2): 111-113.

    19. [19]

      Yang LingZhao WeiChe Yan-KeWang YingJiang Hua . Influence of terminal substituents on the halide anion binding of foldamer-based receptors. Chinese Chemical Letters, 2017, 28(8): 1659-1662. doi: 10.1016/j.cclet.2017.06.006

Metrics
  • PDF Downloads(1)
  • Abstract views(86)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return