Citation: Zou Chuncheng, Han Yuanyuan, Zeng Chuikun, Zhang Tony Y., Ye Jinxing, Song Gonghua. Remote regioselective organocatalytic asymmetric [3+2] cycloaddition of N-2, 2, 2-trifluoroethyl isatin ketimines with cyclic 2, 4-dienones[J]. Chinese Chemical Letters, ;2020, 31(2): 377-380. doi: 10.1016/j.cclet.2019.07.052 shu

Remote regioselective organocatalytic asymmetric [3+2] cycloaddition of N-2, 2, 2-trifluoroethyl isatin ketimines with cyclic 2, 4-dienones

    * Corresponding authors.
    E-mail addresses: tyz@yahoo.com (T.Y. Zhang), yejx@ecust.edu.cn (J. Ye).
  • Received Date: 26 May 2019
    Revised Date: 16 July 2019
    Accepted Date: 25 July 2019
    Available Online: 27 July 2019

Figures(6)

  • An organocatalytic asymmetric [3+2] cycloaddition of trifluoromethyl-containing azomethine ylides with cyclic 2, 4-dienones was developed. The process enables efficient incorporation of CF3 groups into functionalized spiro[pyrrolidin-3, 2'-oxindoles] in high yields with good to excellent enantio-and diastereoselectivities.
  • 加载中
    1. [1]

      (a) A. Gollner, D. Rudolph, H. Arnhof, et al., J. Med. Chem 59 (2016) 10147-10162;
      (b) M. Ito, M. Iwatani, T. Yamamoto, et al., Bioorg. Med. Chem 25 (2017) 4753-4767;
      (c) Y.A. Ivanenkov, S.V. Vasilevski, E.K. Beloglazkina, et al., Bioorg. Med. Chem. Lett. 25 (2015) 404-409;
      (d) A. Kumar, G. Gupta, A.K. Bishnoi, et al., Bioorg. Med. Chem. 23 (2015) 839-848.

    2. [2]

      (a) B. Alcaide, P. Almendros, R. Rodriguez-Acebes, J. Org. Chem. 71 (2006) 2346-2351;
      (b) G. Lesma, N. Landoni, A. Sacchetti, A. Silvani, Tetrahedron 66 (2010) 4474-4478;
      (c) K. Jiang, Z.J. Jia, S. Chen, L. Wu, Y.C. Chen, Chem. -Eur. J. 16 (2010) 2852-2856;
      (d) M.P. Castaldi, D.M. Troast, J.A. Porco Jr, Org. Lett. 11 (2009) 3362-3365.

    3. [3]

      (a) U.K.S. Kumar, H. Ila, H. Junjappa, Org. Lett. 3 (2001) 4193-4196;
      (b) Z. Szakonyi, F. Fülöp, D. Tourwé, N.D. Kimpe, J. Org. Chem. 67 (2002) 2192-2196;
      (c) E. Zhang, C.A. Fan, Y.Q. Tu, F.M. Zhang, Y.L. Song, J. Am. Chem. Soc.131 (2009) 14626-14627.

    4. [4]

      (a) R. Rios, Chem. Soc. Rev. 41 (2012) 1060-1074;
      (b) G.S. Singh, Z.Y. Desta, Chem. Rev. 112 (2012) 6104-6155;
      (c) D. Cheng, Y. Ishihara, B. Tan, C.F. Barbas III, ACS Catal. 4 (2014) 743-762.

    5. [5]

      (a) M. Bonin, A. Chauveau, L. Micouin, Synlett (2006) 2349-2363;
      (b) T.M.V.D. Pinho e Melo, Eur. J. Org. Chem (2006) (2006) 2873-2888;
      (c) G. Pandey, P. Banerjee, S.R. Gadre, Chem. Rev 106 (2006) 4484-4517;
      (d) H. Pellissier, Tetrahedron 63 (2007) 3235-3285;
      (e) L.M. Stanley, M.P. Sibi, Chem. Rev 108 (2008) 2887-2902;
      (f) C. Nájera, J.M. Sansano, Top. Heterocycl. Chem. 12 (2008) 117-145;
      (g) J. Adrio, J.C. Carretero, Chem. Commun 47 (2011) 6784-6794;
      (h) J. Adrio, J.C. Carretero, Chem. Commun 50 (2014) 12434-12446;
      (i) T. Hashimoto, K. Maruoka, Chem. Rev 115 (2015) 5366-5412.

    6. [6]

      (a) I. Ojima, Fluorine in Medicinal Chemistry and Chemical Biology, WileyBlackwell, Chichester, 2009;
      (b) V.A. Petrov, Fluorinated Heterocyclic Compounds: Synthesis Chemistry and Application, Wiley, Hoboken, 2009;
      (c) P. Kirsch, Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications, 2nd, Wiley-VCH, Weinheim, 2013.

    7. [7]

      (a) Q. Sun, X. Li, J. Su, et al., Adv. Synth. Catal. 357 (2015) 3187-3196;
      (b) M. Ma, Y. Zhu, Q. Sun, et al., Chem. Commn. 51 (2015) 8789-8792;
      (c) X. Li, J. Sun, Z. Liu, et al., Org. Lett. 18 (2016) 956-959;
      (d) Z.H. Wang, Z.J. Wu, D.F. Yue, et al., Chem. Commun. 52 (2016) 11708-11711;
      (e) M. Shi, Y.N. Gao, Eur. J. Org. Chem. (2017) (2017) 1552-1560;
      (f) Y. Zhi, K. Zhao, C. Essen, K. Rissanen, D. Enders, Synlett 28 (2017) 2876-2880;
      (g) W.J. Huang, Q. Chen, N. Lin, et al., Org. Chem. Front. 4 (2017) 472-482;
      (h) A. Ponce, I. Alonso, J. Adrio, J.C. Carretero, Chem. -Eur. J. 22 (2016) 4952-4959;
      (i) W.J. Huang, Q. Chen, W.R. Zhu, et al., Heterocycles 94 (2017) 879-893.

    8. [8]

      (a) X. Tan, Y. Liu, P. Melchiorre, Angew. Chem. Int. Ed 51 (2012) 6439-6442;
      (b) T. Kitanosono, P. Xu, S. Kobayashi, Chem. Commun. 49 (2013) 8184-8186;
      (c) T. Kitanosono, P. Xu, S. Kobayashi, Chem. -Asian J. 9 (2014) 179-188;
      (d) X. Gu, T. Guo, Y. Dai, et al., Angew. Chem. Int. Ed 54 (2015) 10249-10253;
      (e) Y. Wei, Z. Liu, X. Wu, et al., Chem. -Eur. J. 21 (2015) 18921-18924;
      (f) C. Zou, C. Zeng, Z. Liu, et al., Angew. Chem. Int. Ed. 55 (2016) 14257-14261;
      (g) X. Sun, J. Fei, C. Zou, M. Lu, J. Ye, RSC Adv. 6 (2016) 106676-106679;
      (h) W. Xiao, Q.Q. Yang, Z. Chen, et al., Org. Lett. 20 (2018) 236-239.

    9. [9]

      X. Tan, P. Melchiorre, Angew. Chem. Int. Ed. 52 (2013) 5360-5363.  doi: 10.1002/anie.201301017

    10. [10]

      X. Tan, N. Hofmann, P. Melchiorre, Angew. Chem. Int. Ed 53 (2014) 2997-3000.  doi: 10.1002/anie.201310487

  • 加载中
    1. [1]

      Yuemin ChenYunqi WuGuoao WangFeihu CuiHaitao TangYingming Pan . Electricity-driven enantioselective cross-dehydrogenative coupling of two C(sp3)-H bonds enabled by organocatalysis. Chinese Chemical Letters, 2024, 35(9): 109445-. doi: 10.1016/j.cclet.2023.109445

    2. [2]

      Ke ZhangSheng ZuoPengyuan YouTong RuFen-Er Chen . Palladium-catalyzed stereoselective decarboxylative [4 + 2] cyclization of 2-methylidenetrimethylene carbonates with pyrrolidone-derived enones: Straightforward access to chiral tetrahydropyran-fused spiro-pyrrolidine-2,3-diones. Chinese Chemical Letters, 2024, 35(6): 109157-. doi: 10.1016/j.cclet.2023.109157

    3. [3]

      Yong-Fang Shi Sheng-Hua Zhou Zuju Ma Xin-Tao Wu Hua Lin Qi-Long Zhu . From [Ba3S][GeS4] to [Ba3CO3][MS4] (M = Ge, Sn): Enhancing optical anisotropy in IR birefringent crystals via functional group implantation. Chinese Journal of Structural Chemistry, 2025, 44(1): 100455-100455. doi: 10.1016/j.cjsc.2024.100455

    4. [4]

      Ruofan YinZhaoxin GuoRui LiuXian-Sen Tao . Ultrafast synthesis of Na3V2(PO4)3 cathode for high performance sodium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109643-. doi: 10.1016/j.cclet.2024.109643

    5. [5]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    6. [6]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    7. [7]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416

    8. [8]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    9. [9]

      Yan ChengHua-Peng RuanYan PengLonghe LiZhenqiang XieLang LiuShiyong ZhangHengyun YeZhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554

    10. [10]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

    11. [11]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    12. [12]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    13. [13]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

    14. [14]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    15. [15]

      Gangsheng LiXiang YuanFu LiuZhihua LiuXujie WangYuanyuan LiuYanmin ChenTingting WangYanan YangPeicheng Zhang . Three-step synthesis of flavanostilbenes with a 2-cyclohepten-1-one core by Cu-mediated [5 + 2] cycloaddition/decarboxylation cascade. Chinese Chemical Letters, 2025, 36(2): 109880-. doi: 10.1016/j.cclet.2024.109880

    16. [16]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    17. [17]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    18. [18]

      Tong SuYue WangQizhen ZhuMengyao XuNing QiaoBin Xu . Multiple conductive network for KTi2(PO4)3 anode based on MXene as a binder for high-performance potassium storage. Chinese Chemical Letters, 2024, 35(8): 109191-. doi: 10.1016/j.cclet.2023.109191

    19. [19]

      Qingwang LIU . MoS2/Ag/g-C3N4 Z-scheme heterojunction: Preparation and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 821-832. doi: 10.11862/CJIC.20240148

    20. [20]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

Metrics
  • PDF Downloads(9)
  • Abstract views(855)
  • HTML views(26)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return