Citation: Wu Tingting, Ding Mengzhen, Shi Cuiping, Qiao Yiqun, Wang Panpan, Qiao Ruirui, Wang Xichang, Zhong Jian. Resorbable polymer electrospun nanofibers: History, shapes and application for tissue engineering[J]. Chinese Chemical Letters, ;2020, 31(3): 617-625. doi: 10.1016/j.cclet.2019.07.033 shu

Resorbable polymer electrospun nanofibers: History, shapes and application for tissue engineering

    * Corresponding authors.
    E-mail addresses: jzhong@shou.edu.cn(J. Zhong).
  • Received Date: 19 June 2019
    Revised Date: 12 July 2019
    Accepted Date: 12 July 2019
    Available Online: 22 January 2020

Figures(4)

  • Resorbable polymer electrospun nanofiber-based materials/devices have high surface-to-volume ratio and often have a porous structure with excellent pore interconnectivity, which are suitable for growth and development of different types of cells. Due to the huge advantages of both resorbable polymers and electrospun nanofibers, resorbable polymer electrospun nanofibers (RPENs) have been widely applied in the field of tissue engineering. In this paper, we will mainly introduce RPENs for tissue engineering. Firstly, the electrospinning technique and electrospun nanofiber architectures are briefly introduced. Secondly, the application of RPENs in the field of tissue engineering is mainly reviewed. Finally, the advantages and disadvantages of RPENs for tissue engineering are discussed. This review will provide a comprehensive guide to apply resorbable polymer electrospun nanofibers for tissue engineering.
  • 加载中
    1. [1]

      N. Ashammakhi, A.M. Gonzalez, P. Törmälä, I.T. Jackson, Eur. J. Plastic Surg. 26(2004) 383-390.  doi: 10.1007/s00238-003-0568-8

    2. [2]

      B.L. Eppley, J. Craniofac. Surg. 8(1997) 85-86.  doi: 10.1097/00001665-199703000-00003

    3. [3]

      Q. Chen, Y. Yang, X. Lin, et al., Chem. Commun. (Camb.) 54(2018) 5369-5372.  doi: 10.1039/C8CC02791A

    4. [4]

      Y. Yu, Q. Xu, S. He, et al., Coord. Chem. Rev. 387(2019) 154-179.  doi: 10.1016/j.ccr.2019.01.020

    5. [5]

      Y. Qiao, J. Wan, L. Zhou, et al., Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 11 (2019) e1527.

    6. [6]

      J. Zhang, Z. Xie, J. Yan, J. Zhong, Synthetic biodegradable polymers for bone tissue engineering, in: V.K. Thakur, M.K. Thakur, M.R. Kessler (Eds.), Handbook of Composites from Renewable Materials, Biodegradable Materials, vol 5, Wiley-Scrivener Publishing, Hoboken, 2010, pp. 355-375.

    7. [7]

      T. Kuang, F. Chen, L. Chang, et al., Chem. Eng. J. 307(2017) 1017-1025.  doi: 10.1016/j.cej.2016.09.023

    8. [8]

      X. Shi, P. Yang, X. Peng, et al., Polymer 170(2019) 65-75.  doi: 10.1016/j.polymer.2019.03.008

    9. [9]

      F. Chen, L. Wu, Z. Zhou, et al., Chin. Chem. Lett. 30(2019) 197-202.  doi: 10.1016/j.cclet.2018.10.007

    10. [10]

      G. Tang, R. Xiong, D. Lv, et al., Adv. Sci. 6 (2019) 1802342.

    11. [11]

      M. Ding, T. Zhang, H. Zhang, et al., Food Hydrocoll. 95(2019) 326-335.  doi: 10.1016/j.foodhyd.2019.04.052

    12. [12]

      M. Ma, J. Zhong, W. Li, et al., Soft Matter 9(2013) 11325-11333.  doi: 10.1039/c3sm51498f

    13. [13]

      X. Liu, J. Aho, S. Baldursdottir, et al., Int. J. Pharm. 529(2017) 371-380.  doi: 10.1016/j.ijpharm.2017.06.086

    14. [14]

      E. Zdraveva, J. Fang, B. Mijovic, T. Lin, Electrospun nanofibers, in: G. Bhat (Ed.), Structure and Properties of High-Performance Fibers, Woodhead Publishing, Oxford, 2017, pp. 267-300.

    15. [15]

      D. Eaves, Handbook of Polymer Foams, Smithers Rapra Publishing, Shropshire, 2004, pp. 1-302.

    16. [16]

      C. Sun, D. Zhang, Y. Liu, R. Xiao, J. Appl. Polym. Sci. 93(2004) 2090-2094.  doi: 10.1002/app.20683

    17. [17]

      C.J. Ellison, A. Phatak, D.W. Giles, C.W. Macosko, F.S. Bates, Polymer 48(2007) 3306-3316.  doi: 10.1016/j.polymer.2007.04.005

    18. [18]

      P. Wang, Y. Wang, L. Tong, Light Sci. Appl. 2 (2013) e102.

    19. [19]

      L. Xia, P. Xi, B. Cheng, Mater. Lett. 147(2015) 79-81.  doi: 10.1016/j.matlet.2015.02.046

    20. [20]

      B. Ma, A. Qin, X. Li, C. He, Carbo. Polym. 97(2013) 300-305.  doi: 10.1016/j.carbpol.2013.04.080

    21. [21]

      A. Abdal-Hay, N.A.M. Barakat, J.K. Lim, Sci. Adv. Mater. 4(2012) 1268-1275.  doi: 10.1166/sam.2012.1382

    22. [22]

      G. Li, P. Li, C. Zhang, et al., Comp. Sci. Technol. 68(2008) 987-994.  doi: 10.1016/j.compscitech.2007.07.010

    23. [23]

      J.D. Hartgerink, E. Beniash, S.I. Stupp, Proc. Nat. Acad. Sci. U. S. A. 99(2002) 5133-5138.  doi: 10.1073/pnas.072699999

    24. [24]

      X. Li, G. Liu, Langmuir 25(2009) 10811-10819.  doi: 10.1021/la9013625

    25. [25]

      R.T. Weitz, L. Harnau, S. Rauschenbach, M. Burghard, K. Kern, Nano Lett. 8(2008) 1187-1191.  doi: 10.1021/nl080124q

    26. [26]

      J. Yu, H. Yu, B. Cheng, X. Zhao, Q. Zhang, J. Photochem. Photobiol. A:Chem.182(2006) 121-127.  doi: 10.1016/j.jphotochem.2006.01.022

    27. [27]

      N. Zhang, R. Qiao, J. Su, et al., Small 13 (2017)1604293. 

    28. [28]

      S. Gao, G. Tang, D. Hua, et al., J. Mater. Chem. B:Mater. Biol. Med. 7(2019) 709-729.  doi: 10.1039/C8TB02491J

    29. [29]

      D.I. Braghirolli, D. Steffens, P. Pranke, Drug Discov. Today 19(2014) 743-753.  doi: 10.1016/j.drudis.2014.03.024

    30. [30]

      S. Sell, C. Barnes, M. Smith, et al., Polymer Int. 56(2007) 1349-1360.  doi: 10.1002/pi.2344

    31. [31]

      W. Gilbert, De Magnete Magnetcisque Corporibus, Et De Magno Magnete Tellure (on the Magnet, Magnetick Bodies Also, and on the Great Magnet the Earth; a New Physiology, Demonstrated by Many Arguments & Experiments), The Chiswick Press, Lodon, 1600.

    32. [32]

      C.V. Boys, Proc. Phys. Soc. London 9 (1887) 8. 

    33. [33]

      J.F. Cooley, Patent, GB 06385, 1900.

    34. [34]

      J.F. Cooley, Patent, US 692631, 1902.

    35. [35]

      W.J. Morton, Patent, US 705691, 1902.

    36. [36]

      A. Formhals, Patent, US 1975504, 1934.

    37. [37]

      A. Formhals, Patent, US 2349950, 1944.

    38. [38]

      N. Tucker, J.J. Stanger, M.P. Staiger, H. Razzaq, K. Hofman, J. Eng. Fibers Fabr. 7(2012) 63-73.
       

    39. [39]

      G. Taylor, P. Roy, Soc. A:Math. Phys. 280(1964) 383-397.

    40. [40]

      J.P. Berry, Patent, US 5024789, 1991.

    41. [41]

      R.F. Valentini, T.G. Vargo, J.A. Gardella, P. Aebischer, Biomaterials 13(1992) 183-190.  doi: 10.1016/0142-9612(92)90069-Z

    42. [42]

      J. Doshi, D.H. Reneker, Electrospinning process and applications of electrospun fibers, Industry Applications Society Annual Meeting, 1993., Conference Record of the 1993 IEEE (1993) 1698-1703. 

    43. [43]

      G. Srinivasan, D.H. Reneker, Polym. Int. 36(1995) 195-201.  doi: 10.1002/pi.1995.210360210

    44. [44]

      S. Rafiel, S. Maghsoodloo, B. Noroozi, V. Mottaghitalab, A.K. Haghi, Cellul. Chem. Technol. 47(2013) 323-338.

    45. [45]

      M.L.F. Nascimento, E.S. Araujo, E.R. Cordeiro, A. HP de Oliveira, H. P de Oliveira, Recent. Pat. Nanotech. 9 (2015) 76-85.  doi: 10.2174/187221050902150819151532

    46. [46]

      A.L. Yarin, S. Koombhongse, D.H. Reneker, J. Appl. Phys. 90(2001) 4836-4846.  doi: 10.1063/1.1408260

    47. [47]

      C. Ding, H. Fang, G. Duan, et al., RSC Adv. 9(2019) 13608-13613.  doi: 10.1039/C9RA02024A

    48. [48]

      H. Yang, S. Jiang, H. Fang, et al., Spectrochim. Acta A 200(2018) 339-344.  doi: 10.1016/j.saa.2018.04.045

    49. [49]

      S. Jiang, D. Han, C. Huang, G. Duan, H. Hou, Mater. Lett. 216(2018) 81-83.  doi: 10.1016/j.matlet.2017.12.146

    50. [50]

      H. Xu, S. Jiang, C. Ding, et al., Mater. Lett. 201(2017) 82-84.  doi: 10.1016/j.matlet.2017.05.019

    51. [51]

      G. Duan, S. Liu, S. Jiang, H. Hou, J. Mater. Sci. 54(2019) 6719-6727.  doi: 10.1007/s10853-019-03326-w

    52. [52]

      G. Duan, S. Liu, H. Hou, e-Polymers 18 (2018) 569.

    53. [53]

      S.R. Merritt, A.A. Exner, Z. Lee, H.A. von Recum, Adv. Eng. Mater. 14 (2012) B266-B278. 

    54. [54]

      M. Zhu, D. Hua, M. Zhong, et al., Colloid Interf. Sci. Commun. 23(2018) 52-58.  doi: 10.1016/j.colcom.2018.01.002

    55. [55]

      A. Varesano, R.A. Carletto, G. Mazzuchetti, J. Mater. Process. Technol. 209(2009) 5178-5185.  doi: 10.1016/j.jmatprotec.2009.03.003

    56. [56]

      H. Niu, T. Lin, J. Nanomater. 2012 (2012) 12.

    57. [57]

      D. Kai, S.S. Liow, X.J. Loh, Mater. Sci. Eng. C 45(2014) 659-670.  doi: 10.1016/j.msec.2014.04.051

    58. [58]

      W. Ma, M. Zhang, Z. Liu, C. Huang, G. Fu, Environ. Sci. Nano 5(2018) 2909-2920.  doi: 10.1039/C8EN00895G

    59. [59]

      X. Shi, Z. Xu, C. Huang, Y. Wang, Z. Cui, Macromolecules 51(2018) 2283-2292.  doi: 10.1021/acs.macromol.8b00220

    60. [60]

      P. Panda, S. Ramakrishna, J. Mater. Sci. 42(2007) 2189-2193.  doi: 10.1007/s10853-007-1581-2

    61. [61]

      W. Ouyang, S. Liu, L. Zhao, et al., Compos. Commun. 9(2018) 76-80.  doi: 10.1016/j.coco.2018.06.006

    62. [62]

      Y. Feng, T. Xiong, S. Jiang, S. Liu, H. Hou, RSC Adv. 6(2016) 24250-24256.  doi: 10.1039/C5RA27676D

    63. [63]

      A. Huang, X. Peng, L. Geng, et al., Polym. Test. 71(2018) 101-109.  doi: 10.1016/j.polymertesting.2018.08.027

    64. [64]

      M. Zhu, D. Hua, H. Pan, et al., J. Colloid Interf. Sci. 511(2018) 411-423.  doi: 10.1016/j.jcis.2017.09.101

    65. [65]

      G. Duan, H. Fang, C. Huang, S. Jiang, H. Hou, J. Mater. Sci. 53(2018) 15096-15106.  doi: 10.1007/s10853-018-2700-y

    66. [66]

      S. Zhou, G. Zhou, S. Jiang, P. Fan, H. Hou, Mater. Lett. 200(2017) 97-100.  doi: 10.1016/j.matlet.2017.04.115

    67. [67]

      P. Zhang, X. Zhao, X. Zhang, et al., ACS Appl. Mater. Interfaces 6(2014) 7563-7571.  doi: 10.1021/am500908v

    68. [68]

      G. Sun, D. Wei, X. Liu, et al., Nanomed. Nanotechnol. Biol. Med. 9(2013) 829-838.  doi: 10.1016/j.nano.2012.12.003

    69. [69]

      Q. Lin, Y. Li, M. Yang, Sensor. Actuat. B -Chem. 161(2012) 967-972.  doi: 10.1016/j.snb.2011.11.074

    70. [70]

      Y. Li, C.T. Lim, M. Kotaki, Polymer 56(2015) 572-580.  doi: 10.1016/j.polymer.2014.10.073

    71. [71]

      X. Wang, T. Wu, W. Wang, C. Huang, X. Jin, Mater. Sci. Eng. C 58(2016) 750-756.  doi: 10.1016/j.msec.2015.09.038

    72. [72]

      A. Katoch, G.J. Sun, S.W. Choi, J.H. Byun, S.S. Kim, Sensor. Actuat. B -Chem.185(2013) 411-416.  doi: 10.1016/j.snb.2013.05.030

    73. [73]

      H. Fan, T. Zhang, X. Xu, N. Lv, Sensor. Actuat. B -Chem. 153(2011) 83-88.  doi: 10.1016/j.snb.2010.10.014

    74. [74]

      T.H. Le, Y. Yang, L. Yu, et al., J. Appl. Polym. Sci. 133 (2016) 43397.

    75. [75]

      G. Duan, A. Greiner, Macromol. Mater. Eng. 304 (2019) 1800669.

    76. [76]

      J. Jun, J.S. Lee, D.H. Shin, S.G. Kim, J. Jang, Nanoscale 7(2015) 16026-16033.  doi: 10.1039/C5NR03616J

    77. [77]

      W. Ma, Z. Guo, J. Zhao, et al., Sep. Purif. Technol. 177(2017) 71-85.  doi: 10.1016/j.seppur.2016.12.032

    78. [78]

      W. Ma, Q. Zhang, S.K. Samal, et al., RSC Adv. 6(2016) 41861-41870.  doi: 10.1039/C6RA06224E

    79. [79]

      D.G. Yu, X.Y. Li, X. Wang, et al., ACS Appl. Mater. Interfaces 7(2015) 18891-18897.  doi: 10.1021/acsami.5b06007

    80. [80]

      S. Jiang, G. Duan, E. Zussman, A. Greiner, S. Agarwal, ACS Appl. Mater. Interfaces 6(2014) 5918-5923.  doi: 10.1021/am500837s

    81. [81]

      T.T.T. Nguyen, C. Ghosh, S.G. Hwang, N. Chanunpanich, J.S. Park, Int. J. Pharm. 439(2012) 296-306.  doi: 10.1016/j.ijpharm.2012.09.019

    82. [82]

      J. Zhong, H. Zhang, J. Yan, X. Gong, Colloids Surf. B -Biointerfaces 136(2015) 772-778.  doi: 10.1016/j.colsurfb.2015.10.017

    83. [83]

      X. Xi, Q. Ma, M. Yang, et al., J. Mater. Sci. Mater. Electron.25(2014) 4024-4032.  doi: 10.1007/s10854-014-2124-7

    84. [84]

      J.H. He, H.Y. Kong, R.R. Yang, et al., Thermal Sci. 16(2012) 1263-1279.

    85. [85]

      D. Li, Y. Wang, Y. Xia, Adv. Mater. 16(2004) 361-366.  doi: 10.1002/adma.200306226

    86. [86]

      L. Liu, H. Bakhshi, S. Jiang, H. Schmalz, S. Agarwal, Macromol. Rapid Commun. 39 (2018) 1800082. 

    87. [87]

      Y. Zuo, F. Yang, J.G.C. Wolke, Y. Li, J.A. Jansen, Acta Biomater. 6(2010) 1238-1247.  doi: 10.1016/j.actbio.2009.10.036

    88. [88]

      Y. Zhou, J. Fang, X. Wang, T. Lin, J. Mater. Res. 27(2012) 537-544.  doi: 10.1557/jmr.2011.295

    89. [89]

      E. Ercolani, C. Del Gaudio, A. Bianco, J. Tissue. Eng. Regen. M. 9(2015) 861-888.  doi: 10.1002/term.1697

    90. [90]

      M.L. Muerza-Cascante, D. Haylock, D.W. Hutmacher, P.D. Dalton, Tissue Eng. Part B-Rev. 21(2015) 187-202.  doi: 10.1089/ten.teb.2014.0347

    91. [91]

      W. Zhao, W. Liu, J. Li, X. Lin, Y. Wang, J. Biomed. Mater. Res. Part B:Appl. Biomater. 103(2015) 807-818.

    92. [92]

      J. Kucinska-Lipka, I. Gubanska, H. Janik, M. Sienkiewicz, Mater. Sci. Eng. C 46(2015) 166-176.  doi: 10.1016/j.msec.2014.10.027

    93. [93]

      G.C. Ingavle, J.K. Leach, Tissue. Eng. Part B-Rev. 20(2014) 277-293.  doi: 10.1089/ten.teb.2013.0276

    94. [94]

      I. Woods, T.C. Flanagan, Expet. Rev. Cardiovasc. Ther. 12(2014) 815-832.

    95. [95]

      P. Li, Z. Shang, K. Cui, et al., Chin. Chem. Lett. 30(2019) 157-159.  doi: 10.1016/j.cclet.2018.01.037

    96. [96]

      X. Hu, S. Liu, G. Zhou, et al., J. Control. Release 185(2014) 12-21.  doi: 10.1016/j.jconrel.2014.04.018

    97. [97]

      N. Ashammakhi, I. Wimpenny, L. Nikkola, Y. Yang, J. Biomed. Nanotechnol. 5(2009) 1-19.  doi: 10.1166/jbn.2009.1003

    98. [98]

      G. Duan, A.R.R. Bagheri, S. Jiang, et al., Biomacromolecules 18(2017) 3215-3221.  doi: 10.1021/acs.biomac.7b00852

    99. [99]

      D. Hua, Z. Liu, F. Wang, et al., Carbohyd. Polym. 151(2016) 1240-1244.  doi: 10.1016/j.carbpol.2016.06.066

    100. [100]

      Z. Guo, G. Tang, Y. Zhou, et al., Carbohyd. Polym. 169(2017) 198-205.  doi: 10.1016/j.carbpol.2017.04.020

    101. [101]

      X. Shi, W. Zhou, D. Ma, et al., J. Nanomater. 16 (2015) 122. 

    102. [102]

      H. Yang, S. Liu, L. Cao, S. Jiang, H. Hou, J. Mater. Chem. A:Mater. Energy Sustain. 6(2018) 21216-21224.  doi: 10.1039/C8TA05109G

    103. [103]

      Z. Dong, S.J. Kennedy, Y. Wu, J. Power Sources 196(2011) 4886-4904.  doi: 10.1016/j.jpowsour.2011.01.090

    104. [104]

      B. Huang, X. Wang, H. Fang, S. Jiang, H. Hou, Mater. Lett. 234(2019) 354-356.  doi: 10.1016/j.matlet.2018.09.131

    105. [105]

      X. Gong, J. Yang, Y. Jiang, S. Mu, Prog. Chem. 26(2014) 41-47.

    106. [106]

      F. Zhao, X. Zhao, B. Peng, et al., Chin. Chem. Lett. 29(2018) 1692-1697.  doi: 10.1016/j.cclet.2017.12.015

    107. [107]

      B. Ghorani, N. Tucker, Food Hydrocol. 51(2015) 227-240.  doi: 10.1016/j.foodhyd.2015.05.024

    108. [108]

      A. Rezaei, A. Nasirpour, M. Fathi, Compr. Rev. Food Sci. Food Saf. 14(2015) 269-284.  doi: 10.1111/1541-4337.12128

    109. [109]

      J.A. Bhushani, C. Anandharamakrishnan, Trends Food Sci. Technol. 38(2014) 21-33.  doi: 10.1016/j.tifs.2014.03.004

    110. [110]

      D. Lv, R. Wang, G. Tang, et al., ACS Appl. Mater. Interfaces 11(2019) 12880-12889.  doi: 10.1021/acsami.9b01508

    111. [111]

      D. Lv, M. Zhu, Z. Jiang, et al., Macromol. Mater. Engin. 303 (2018)1800336.

    112. [112]

      M. Zhu, J. Han, F. Wang, et al., Macromol. Mater. Eng. 302 (2017) 1600353.

    113. [113]

      M. Zhu, R. Xiong, C. Huang, Carbohyd. Polym 205(2019) 55-62.  doi: 10.1016/j.carbpol.2018.09.075

    114. [114]

      Q. Ding, X. Xu, Y. Yue, et al., ACS Appl. Mater. Interfaces 10(2018) 27987-28002.  doi: 10.1021/acsami.8b09656

    115. [115]

      J. Han, K. Lu, Y. Yue, et al., Ind. Crop. Prod. 128(2019) 94-107.  doi: 10.1016/j.indcrop.2018.11.004

    116. [116]

      J. Han, Y. Yue, Q. Wu, et al., Cellulose 24(2017) 4433-4448.  doi: 10.1007/s10570-017-1409-4

    117. [117]

      S. Jiang, B. Uch, S. Agarwal, A. Greiner, ACS Appl. Mater. Interfaces 9(2017) 32308-32315.  doi: 10.1021/acsami.7b11045

    118. [118]

      J. Zhu, S. Jiang, H. Hou, S. Agarwal, A. Greiner, Macromol. Mater. Engin. 303 (2018) 1700615.

    119. [119]

      S. Jiang, S. Agarwal, A. Greiner, Angew. Chem. Int. Ed. 56(2017) 15520-15538.  doi: 10.1002/anie.201700684

    120. [120]

      S. Jiang, G. Duan, U. Kuhn, et al., Angew. Chem. Int. Ed. 56(2017) 3285-3288.  doi: 10.1002/anie.201611787

    121. [121]

      I.-D. Kim, A. Rothschild, Polym. Advan. Technol. 22(2011) 318-325.  doi: 10.1002/pat.1797

    122. [122]

      Z. Su, J. Ding, G. Wei, RSC Adv. 4(2014) 52598-52610.  doi: 10.1039/C4RA07848A

    123. [123]

      K.Y. Hua, C.M. Deng, C. He, et al., Chin. Chem. Lett. 24(2013) 643-646.  doi: 10.1016/j.cclet.2013.04.033

    124. [124]

      Y. Qiao, C. Shi, X. Wang, et al., ACS Appl. Mater. Interfaces 11(2019) 5401-5413.  doi: 10.1021/acsami.8b19839

    125. [125]

      S. Jiang, V. Gruen, S. Rosenfeldt, et al., Research (2019) 4152536.

    126. [126]

      C. Jiang, J. Nie, G. Ma, RSC Adv. 6(2016) 22996-23007.  doi: 10.1039/C5RA27687J

    127. [127]

      D.C. Higgins, R. Wang, M.A. Hoque, et al., Nano Energy 10(2014) 135-143.  doi: 10.1016/j.nanoen.2014.09.013

    128. [128]

      S.J. Guo, J. Bai, H.O. Liang, C.P. Li, Chin. Chem. Lett. 27(2016) 459-463.  doi: 10.1016/j.cclet.2015.12.029

    129. [129]

      S. Agarwal, S. Jiang, Y. Chen, Macromol. Mater. Engin. 304 (2019) 1800548.

    130. [130]

      S. Jiang, N. Helfricht, G. Papastavrou, A. Greiner, S. Agarwal, Macromol. Rapid Commun. 39 (2018) 1700838. 

    131. [131]

      K. Molnar, A. Jedlovszky-Hajdu, M. Zrinyi, S. Jiang, S. Agarwal, Macromol. Rapid Commun. 38 (2017) 1700147.

    132. [132]

      S. Jiang, F. Liu, A. Lerch, L. Ionov, S. Agarwal, Adv. Mater. 27(2015) 4865-4870.  doi: 10.1002/adma.201502133

    133. [133]

      W. Fu, Y. Dai, J. Tian, et al., Nanotechnology 29 (2018) 345607.

    134. [134]

      W. Ma, S.K. Samal, Z. Liu, et al., J. Membrane Sci. 537(2017) 128-139.  doi: 10.1016/j.memsci.2017.04.063

    135. [135]

      W. Ma, Q. Zhang, D. Hua, et al., RSC Adv. 6(2016) 12868-12884.  doi: 10.1039/C5RA27309A

    136. [136]

      M. Zhang, W. Ma, S. Wu, et al., J. Colloid Interf. Sci. 547(2019) 136-144.  doi: 10.1016/j.jcis.2019.03.099

    137. [137]

      Z. Jiang, H. Zhang, M. Zhu, et al., J. Appl. Polym. Sci. 135 (2018) 45766.

    138. [138]

      W. Ma, M. Zhang, Z. Liu, et al., J. Membrane Sci. 570(2019) 303-313.

    139. [139]

      W. Ma, J. Zhao, O. Oderinde, et al., J. Colloid Interf. Sci. 532(2018) 12-23.  doi: 10.1016/j.jcis.2018.06.067

    140. [140]

      Z. Liu, W. Ma, M. Zhang, et al., J. Appl. Polym. Sci. 136 (2019) 47638.

    141. [141]

      Y. Chen, L. Sui, H. Fang, et al., Compos. Sci. Technol. 174(2019) 20-26.  doi: 10.1016/j.compscitech.2019.02.012

    142. [142]

      S. Jiang, Y. Chen, G. Duan, et al., Polym. Chem. 9(2018) 2685-2720.  doi: 10.1039/C8PY00378E

    143. [143]

      J. Zhou, B. Zhang, X. Liu, et al., Carbohyd. Polym. 143(2016) 301-309.  doi: 10.1016/j.carbpol.2016.01.023

    144. [144]

      J. Zhong, G. Sun, D. He, Nanoscale 6(2014) 12217-12228.  doi: 10.1039/C4NR04296D

    145. [145]

      W. Fu, Y. Dai, X. Meng, et al., Nanotechnology 30 (2019) 045602.

    146. [146]

      J. Zhang, K. Qiu, B. Sun, et al., J. Mater. Chem. B:Mater. Biol. Med. 2(2014) 7945-7954.  doi: 10.1039/C4TB01185F

    147. [147]

      V.M. Merkle, P.L. Tran, M. Hutchinson, et al., Acta Biomater. 27(2015) 77-87.  doi: 10.1016/j.actbio.2015.08.044

    148. [148]

      G. Jin, M.P. Prabhakaran, D. Kai, S. Ramakrishna, Eur. J. Pharm. Biopharm. 85(2013) 689-698.  doi: 10.1016/j.ejpb.2013.06.002

    149. [149]

      L. Wang, Y. Wu, B. Guo, P.X. Ma, ACS Nano 9(2015) 9167-9179.  doi: 10.1021/acsnano.5b03644

    150. [150]

      T. Liu, K. Huang, L. Li, et al., Comp. Sci. Technol. 175(2019) 100-110.  doi: 10.1016/j.compscitech.2019.03.012

    151. [151]

      Y. Zhu, Y. Chen, G. Xu, et al., Mater. Sci. Eng. C 32(2012) 390-394.  doi: 10.1016/j.msec.2011.11.002

    152. [152]

      D. Wei, R. Qiao, J. Dao, et al., Small 14 (2018) 1800063.

    153. [153]

      N. Xu, X. Ye, D. Wei, et al., ACS Appl. Mater. Interfaces 6(2014) 14952-14963.  doi: 10.1021/am502716t

    154. [154]

      J.H. Jang, O. Castano, H.W. Kim, Adv. Drug Deliv. Rev. 61(2009) 1065-1083.  doi: 10.1016/j.addr.2009.07.008

    155. [155]

      J.M. Holzwarth, P.X. Ma, Biomaterials 32(2011) 9622-9629.  doi: 10.1016/j.biomaterials.2011.09.009

    156. [156]

      M.E. Frohbergh, A. Katsman, G.P. Botta, et al., Biomaterials 33(2012) 9167-9178.  doi: 10.1016/j.biomaterials.2012.09.009

    157. [157]

      J. Venugopal, S. Low, A.T. Choon, T.S. Sampath Kumar, S. Ramakrishna, J. Mater. Sci. Mater. Med. 19(2008) 2039-2046.  doi: 10.1007/s10856-007-3289-x

    158. [158]

      H.W. Kim, J.H. Song, H.E. Kim, Adv. Funct. Mater. 15(2005) 1988-1994.  doi: 10.1002/adfm.200500116

    159. [159]

      H.W. Kim, H.H. Lee, J.C. Knowles, J. Biomed. Mater. Res. A 79A (2006) 643-649. 

    160. [160]

      G. Chen, Y. Lv, Curr. Pharm. Des. 21(2015) 1967-1978.  doi: 10.2174/1381612821666150302152704

    161. [161]

      M. Ngiam, S. Liao, A.J. Patil, et al., Bone 45(2009) 4-16.  doi: 10.1016/j.bone.2009.03.674

    162. [162]

      H.J. Cho, S.K. Madhurakkat Perikamana, J.H. Lee, et al., ACS Appl. Mater. Interfaces 6(2014) 11225-11235.  doi: 10.1021/am501391z

    163. [163]

      S. Ding, L. Li, X. Liu, et al., Colloids Surf. B -Biointerfaces 133(2015) 286-295.  doi: 10.1016/j.colsurfb.2015.06.015

    164. [164]

      X. Liu, D. Wei, J. Zhong, et al., ACS Appl. Mater. Interfaces 7(2015) 18540-18552.  doi: 10.1021/acsami.5b04868

    165. [165]

      M. Kim, B. Hong, J. Lee, et al., Biomacromolecules 13(2012) 2287-2298.  doi: 10.1021/bm3005353

    166. [166]

      A. Shafiee, M. Soleimani, G.A. Chamheidari, et al., J. Biomed. Mater. Res. A 99A (2011) 467-478. 

    167. [167]

      S.D. McCullen, H. Autefage, A. Callanan, E. Gentleman, M.M. Stevens, Tissue Eng. Part A 18(2012) 2073-2083.  doi: 10.1089/ten.tea.2011.0606

    168. [168]

      N.W. Garrigues, D. Little, J. Sanchez-Adams, D.S. Ruch, F. Guilak, J. Biomed. Mater. Res. A. 102(2014) 3998-4008.  doi: 10.1002/jbm.a.35068

    169. [169]

      S. Zhang, L. Chen, Y. Jiang, et al., Acta Biomater. 9(2013) 7236-7247.  doi: 10.1016/j.actbio.2013.04.003

    170. [170]

      J.F. Piai, M.A. da Silva, A. Martins, et al., Appl. Surf. Sci. 403(2017) 112-125.  doi: 10.1016/j.apsusc.2016.12.135

    171. [171]

      R. Zheng, H. Duan, J. Xue, et al., Biomaterials 35(2014) 152-164.  doi: 10.1016/j.biomaterials.2013.09.082

    172. [172]

      W. Chen, S. Chen, Y. Morsi, et al., ACS Appl. Mater. Interfaces 8(2016) 24415-24425.  doi: 10.1021/acsami.6b06825

    173. [173]

      V. Chiono, C. Tonda-Turo, Prog. Neurobiol. 131(2015) 87-104.  doi: 10.1016/j.pneurobio.2015.06.001

    174. [174]

      E. Kijenska, M.P. Prabhakaran, W. Swieszkowski, K.J. Kurzydlowski, S. Ramakrishna, Eur. Polym. J. 50(2014) 30-38.  doi: 10.1016/j.eurpolymj.2013.10.021

    175. [175]

      K. Suzuki, H. Tanaka, M. Ebara, et al., Acta Biomater. 53(2017) 250-259.  doi: 10.1016/j.actbio.2017.02.004

    176. [176]

      J. Xie, W. Liu, M.R. MacEwan, P.C. Bridgman, Y. Xia, ACS Nano 8(2014) 1878-1885.  doi: 10.1021/nn406363j

    177. [177]

      M.P. Prabhakaran, E. Vatankhah, S. Ramakrishna, Biotechnol. Bioeng. 110(2013) 2775-2784.  doi: 10.1002/bit.24937

    178. [178]

      J. Hu, L. Tian, M. Prabhakaran, X. Ding, S. Ramakrishna, Polymers 8 (2016) 54. 

    179. [179]

      W. Zhu, F. Masood, J. O'Brien, L.G. Zhang, Nanomed. Nanotechnol. Biol. Med. 11(2015) 693-704.  doi: 10.1016/j.nano.2014.12.001

    180. [180]

      J. Hu, D. Kai, H. Ye, et al., Mater. Sci. Eng. C 70(2017) 1089-1094.  doi: 10.1016/j.msec.2016.03.035

    181. [181]

      F. Du, H. Wang, W. Zhao, et al., Biomaterials 33(2012) 762-770.  doi: 10.1016/j.biomaterials.2011.10.037

    182. [182]

      R.Y. Kannan, H.J. Salacinski, P.E. Butler, G. Hamilton, A.M. Seifalian, J. Biomed. Mater. Res. Part B: Appl. Biomater. 74B (2005) 570-581.

    183. [183]

      A. Hasan, A. Memic, N. Annabi, et al., Acta Biomater. 10(2014) 11-25.  doi: 10.1016/j.actbio.2013.08.022

    184. [184]

      L. Jia, M.P. Prabhakaran, X. Qin, D. Kai, S. Ramakrishna, J. Mater. Sci. 48(2013) 5113-5124.  doi: 10.1007/s10853-013-7359-9

    185. [185]

      T. Zhu, K. Yu, M.A. Bhutto, et al., Chem. Eng. J. 315(2017) 177-190.  doi: 10.1016/j.cej.2016.12.134

    186. [186]

      K.K. Sankaran, K.S. Vasanthan, U.M. Krishnan, S. Sethuraman, J. Tissue Eng. Regen. Med. 8(2014) 640-651.  doi: 10.1002/term.1566

    187. [187]

      L. Jia, M.P. Prabhakaran, X. Qin, S. Ramakrishna, J. Biomater. Appl. 29(2014) 364-377.  doi: 10.1177/0885328214529002

    188. [188]

      S. Rayatpisheh, D.E. Heath, A. Shakouri, et al., Biomaterials 35(2014) 2713-2719.  doi: 10.1016/j.biomaterials.2013.12.035

    189. [189]

      S.G. Kumbar, S.P. Nukavarapu, R. James, L.S. Nair, C.T. Laurencin, Biomaterials 29(2008) 4100-4107.  doi: 10.1016/j.biomaterials.2008.06.028

    190. [190]

      P.P. Bonvallet, B.K. Culpepper, J.L. Bain, et al., Tissue Eng. Part A 20(2014) 2434-2445.  doi: 10.1089/ten.tea.2013.0645

    191. [191]

      R.F. Pereira, C.C. Barrias, P.L. Granja, P.J. Bartolo, Nanomedicine 8(2013) 603-621.  doi: 10.2217/nnm.13.50

    192. [192]

      D.M. Supp, S.T. Boyce, Clin. Dermatol. 23(2005) 403-412.  doi: 10.1016/j.clindermatol.2004.07.023

    193. [193]

      A. Yari, H. Yeganeh, H. Bakhshi, J. Mater. Sci. Mater. Med. 23(2012) 2187-2202.  doi: 10.1007/s10856-012-4683-6

    194. [194]

      P. Losi, E. Briganti, C. Errico, et al., Acta Biomater. 9(2013) 7814-7821.  doi: 10.1016/j.actbio.2013.04.019

    195. [195]

      K.M. Guthrie, A. Agarwal, D.S. Tackes, et al., Ann. Surg. 256(2012) 371-377.  doi: 10.1097/SLA.0b013e318256ff99

    196. [196]

      B.-M. Min, G. Lee, S.H. Kim, et al., Biomaterials 25(2004) 1289-1297.  doi: 10.1016/j.biomaterials.2003.08.045

    197. [197]

      G. Jin, M.P. Prabhakaran, S. Ramakrishna, Acta Biomater. 7(2011) 3113-3122.  doi: 10.1016/j.actbio.2011.04.017

    198. [198]

      G.D. Mogoşanu, A.M. Grumezescu, Int. J. Pharm. 463(2014) 127-136.  doi: 10.1016/j.ijpharm.2013.12.015

    199. [199]

      U. Dashdorj, M.K. Reyes, A.R. Unnithan, et al., Int. J. Biol. Macromol. 80(2015) 1-7.  doi: 10.1016/j.ijbiomac.2015.06.026

    200. [200]

      E.I. Shishatskaya, E.D. Nikolaeva, O.N. Vinogradova, T.G. Volova, J. Mater. Sci. Mater. Med. 27 (2016) 165. 

    201. [201]

      N. Liao, A.R. Unnithan, M.K. Joshi, et al., Colloids Surf. A:Physicochem. Eng. Asp. 469(2015) 194-201.  doi: 10.1016/j.colsurfa.2015.01.022

    202. [202]

      A.R. Unnithan, G. Gnanasekaran, Y. Sathishkumar, Y.S. Lee, C.S. Kim, Carbo. Polym. 102(2014) 884-892.  doi: 10.1016/j.carbpol.2013.10.070

    203. [203]

      N. Tuancharoensri, G.M. Ross, S. Mahasaranon, P.D. Topham, S. Ross, Polymer Int. 66(2017) 1463-1472.  doi: 10.1002/pi.5393

    204. [204]

      G. Jin, M.P. Prabhakaran, D. Kai, et al., Biomaterials 34(2013) 724-734.  doi: 10.1016/j.biomaterials.2012.10.026

    205. [205]

      E.J. Chong, T.T. Phan, I.J. Lim, et al., Acta Biomater. 3(2007) 321-330.  doi: 10.1016/j.actbio.2007.01.002

    206. [206]

      A.C. Alavarse, F.W. de Oliveira Silva, J.T. Colque, et al., Mater. Sci. Eng. C 77(2017) 271-281.  doi: 10.1016/j.msec.2017.03.199

    207. [207]

      M. Ranjbar-Mohammadi, S. Rabbani, S.H. Bahrami, M.T. Joghataei, F. Moayer, Mater. Sci. Eng. C 69(2016) 1183-1191.  doi: 10.1016/j.msec.2016.08.032

    208. [208]

      A. GhavamiNejad, A. Rajan Unnithan, A. Ramachandra Kurup Sasikala, et al., ACS Appl. Mater. Interfaces 7(2015) 12176-12183.  doi: 10.1021/acsami.5b02542

    209. [209]

      Í. Ortega, A.J. Ryan, P. Deshpande, S. MacNeil, F. Claeyssens, Acta Biomater. 9(2013) 5511-5520.  doi: 10.1016/j.actbio.2012.10.039

    210. [210]

      G.C. Ebersole, E.G. Buettmann, M.R. MacEwan, et al., Surg. Endosc. 26(2012) 2717-2728.  doi: 10.1007/s00464-012-2258-8

    211. [211]

      S.R. Son, R.A. Franco, S.H. Bae, Y.K. Min, B.T. Lee, J. Biomed. Mater. Res. Part B: Appl. Biomater. 101B (2013) 1095-1105.

    212. [212]

      C. Shi, Y. He, M. Ding, Y. Wang, J. Zhong, Trend. Food Sci. Technol. 87(2019) 3-13.  doi: 10.1016/j.tifs.2018.11.028

    213. [213]

      C. Shi, Y. He, M. Ding, Y. Wang, J. Zhong, Trend. Food Sci. Technol. 87(2019) 14-25.  doi: 10.1016/j.tifs.2018.11.027

    214. [214]

      C. Shi, C. Bi, M. Ding, et al., Food Hydrocoll. 93(2019) 253-260.  doi: 10.1016/j.foodhyd.2019.02.035

    215. [215]

      W. Zhang, M. Huang, H. Su, et al., ACS Central Sci. 2(2016) 48-54.  doi: 10.1021/acscentsci.5b00385

    216. [216]

      W. Zhang, X. Lu, J. Mao, et al., Angew. Chem. Int. Ed. 56(2017) 15014-15019.  doi: 10.1002/anie.201709354

  • 加载中
    1. [1]

      Kang-Yi HuaChang-Min DengChao HeLi-Qi ShiDe-Feng ZhuQing-Guo HeJian-Gong Cheng . Organic semiconductors-coated polyacrylonitrile (PAN) electrospun nanofibrous mats for highly sensitive chemosensors via evanescent-wave guiding effect. Chinese Chemical Letters, 2013, 24(07): 643-646.

    2. [2]

      Ying Shan Zhou Dong Zhi Yang Jun Nie . Preparation and characterization of crosslinked chitosan-based nanofibers. Chinese Chemical Letters, 2007, 18(1): 118-120. doi: 10.1016/j.cclet.2006.11.035

    3. [3]

      Qiao Zhen Yu Ying Li Mang Wang Hong Zheng Chen . Polyaniline nanobelts,flower-like and rhizoid-like nanostructures by electrospinning. Chinese Chemical Letters, 2008, 19(2): 223-226. doi: 10.1016/j.cclet.2007.12.005

    4. [4]

      Hai Ying Wang Yang Yang Xiang Li Li Juan Li Ce Wang . Preparation and characterization of porous TiO2/ZnO composite nanofibers via electrospinning. Chinese Chemical Letters, 2010, 21(9): 1119-1123. doi: 10.1016/j.cclet.2010.03.009

    5. [5]

      Xiao-Qiang LiWan-Wan LiuShui-Ping LiuMeng-Juan LiYong-Gui LiMing-Qiao GeIn situ polymerization of aniline in electrospun microfibers. Chinese Chemical Letters, 2014, 25(1): 83-86.

    6. [6]

      Shou-Jun GuoJie BaiHai-Ou LiangChun-Ping Li . The controllable preparation of electrospun carbon fibers supported Pd nanoparticles catalyst and its application in Suzuki and Heck reactions. Chinese Chemical Letters, 2016, 27(03): 459-463. doi: 10.1016/j.cclet.2015.12.029

    7. [7]

      Shan Shan Tang Chang Lu Shao Shou Zhu Li . Electrospun nanofibers of poly(vinyl pyrrolidone)/Eu3+ and its photoluminescence properties. Chinese Chemical Letters, 2007, 18(4): 465-468. doi: 10.1016/j.cclet.2007.01.040

    8. [8]

      Zhao FangyuanZhao XinPeng BoGan FengYao MengyaoTan WenjunDong JieZhang Qinghua . Polyimide-derived carbon nanofiber membranes as anodes for high-performance flexible lithium ion batteries. Chinese Chemical Letters, 2018, 29(11): 1692-1697. doi: 10.1016/j.cclet.2017.12.015

    9. [9]

      Wang QuanXu JianxiangJin HaimingZheng WenhaoZhang XiaoleiHuang YixingQian Zhiyong . Artificial periosteum in bone defect repair-A review. Chinese Chemical Letters, 2017, 28(9): 1801-1807. doi: 10.1016/j.cclet.2017.07.011

    10. [10]

      CHANG Guo-QingZHENG XiCHEN Ri-YaoCHEN XiaoCHEN Li-QinCHEN Zhen . Silver Nanoparticles Filling in TiO2 Hollow Nanofibers by Coaxial Electrospinning. Acta Physico-Chimica Sinica, 2008, 24(10): 1790-1796. doi: 10.1016/S1872-1508(08)60073-X

    11. [11]

      Tian DiLu XiaofengLi WeimoLi YueWang Ce . Research on Electrospun Nanofiber-Based Binder-Free Electrode Materials for Supercapacitors. Acta Physico-Chimica Sinica, 2020, 36(2): 1904056-0. doi: 10.3866/PKU.WHXB201904056

    12. [12]

      Juan LiuJian ShenMian LiLi-Ping Guo . A high-efficient amperometric hydrazine sensor based on novel electrospun CoFe2O4 spinel nanofibers. Chinese Chemical Letters, 2015, 26(12): 1478-1484. doi: 10.1016/j.cclet.2015.10.026

    13. [13]

      Li XiaoqiangWang JidongLi MengjuanJin YangGu ZhijieLiu ChangchunOgino Kenji . Fe-doped TiO2/SiO2 nanofibrous membranes with surface molecular imprinted modification for selective photodegradation of 4-nitrophenol. Chinese Chemical Letters, 2018, 29(3): 527-530. doi: 10.1016/j.cclet.2017.09.007

    14. [14]

      Li XiaoqiangWang JidongHu ZimuLi MengjuanOgino KenjiIn situ polypyrrole polymerization enhances the photocatalytic activity of nanofibrous TiO2/SiO2 membranes. Chinese Chemical Letters, 2018, 29(1): 166-170. doi: 10.1016/j.cclet.2017.05.020

    15. [15]

      Li XiaopengZhu YuanhuanMa HuiSheng Yong . A polarization method for quickly distinguishing the morphology of electro-spun ultrafine fibers. Chinese Chemical Letters, 2018, 29(8): 1317-1320. doi: 10.1016/j.cclet.2018.05.042

    16. [16]

      JIN FengLI JingHU ChenjiDONG HoucaiCHEN PengSHEN YanbinCHEN Liwei . High Performance Solid-state Battery with Integrated Cathode and Electrolyte. Acta Physico-Chimica Sinica, 2019, 35(12): 1399-1403. doi: 10.3866/PKU.WHXB201904085

    17. [17]

      Liu XiaoyunWang LiyingChen SiyuanZha Liusheng . Silver nanoparticles embedded temperature-sensitive nanofibrous membrane as a smart free-standing SERS substrate. Chinese Chemical Letters, 2019, 30(12): 2021-2026. doi: 10.1016/j.cclet.2019.04.031

    18. [18]

      Dong YanFeng YuezhanDeng JiweiHe PengbinMa Jianmin . Electrospun Sb2Se3@C nanofibers with excellent lithium storage properties. Chinese Chemical Letters, 2020, 31(3): 909-914. doi: 10.1016/j.cclet.2019.11.039

Metrics
  • PDF Downloads(1)
  • Abstract views(154)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return