Citation: Lan Tianlei, Qin Haijuan, Chen Wenting, Liu Wei, Chen Chao. Synthesis and reactivity of carbazole-containing hypervalent iodine(Ⅲ) reagents[J]. Chinese Chemical Letters, ;2020, 31(2): 357-360. doi: 10.1016/j.cclet.2019.07.031 shu

Synthesis and reactivity of carbazole-containing hypervalent iodine(Ⅲ) reagents

    * Corresponding author.
    E-mail addresses: liuwei2006@tust.edu.cn (W. Liu), chenchao01@mails.tsinghua.edu.cn (C. Chen).
    1 These authors contributed equally to this work.
  • Received Date: 4 June 2019
    Revised Date: 29 June 2019
    Accepted Date: 12 July 2019
    Available Online: 12 July 2019

Figures(5)

  • A range of bench-stable carbazole-containing hypervalent iodine(Ⅲ) reagents were synthesized by I-N bond formation in good yields. This kind of benziodoxolone reagents was used for a C-N coupling reaction to introduce a carbazole group to aromatic heterocycle compounds.
  • 加载中
    1. [1]

      (a) A.W. Schmidt, K.R. Reddy, H.J. Knolker, Chem. Rev. 112 (2012) 3193-3328;
      (b) H.J. Knölker, K.R. Reddy, Chem. Rev. 102 (2012) 4303-4427;
      (c) Z. Sadiq, E.A. Hussain, S. Naz, Mini-Rev. Org. Chem. 14 (2017) 469-488;
      (d) J.F. Morin, M. Leclerc, D. Adès, A. Siove, Macromol. Rapid Commun. 26 (2005) 761-778;
      (e) J.V. Grazulevicius, P. Strohriegl, J. Pielichowski, K. Pielichowski, Prog. Polym. Sci. 28 (2003) 1297-1353.

    2. [2]

      (a) P. Rajakumar, K. Sekar, V. Shanmugaiah, et al., Eur. J. Med. Chem. 44 (2009) 3040-3045;
      (b) Z. Liu, R.C. Larock, Tetrahedron 63 (2007) 347-355;
      (c) C. Ito, S. Katsuno, M. Itoigawa, et al., J. Nat. Prod. 63 (2000) 125-128.

    3. [3]

      (a) M.P. Gaj, C. Fuentes-Hernandez, Y. Zhang, S.R. Marder, B. Kippelen, Org. Electron. 16 (2015) 109-112;
      (b) Z.M. Hudson, Z. Wang, M.G. Helander, Z.H. Lu, S. Wang, Adv. Mater. 24 (2012) 2922-2928;
      (c) L.S. Sapochak, A.B. Padmaperuma, X. Cai, et al., J. Phys. Chem. C 112 (2008) 7989-7996;
      (d) M. Baibarac, M. Lira-Cantú, J. Oró Sol, et al., Compos. Sci. Technol. 67 (2007) 2556-2563.

    4. [4]

      (a) I. Tanaka, Y. Tabata, S. Tokito, Chem. Phys. Lett. 400 (2004) 86-89;
      (b) T. Thoms, S. Okada, J.P. Chen, M. Furugori, Thin Solid Films 436 (2003) 264-268.

    5. [5]

      (a) M.M. Heravi, Z. Kheilkordi, V. Zadsirjan, M. Heydari, M. Malmir, J. Organoment. Chem. 861 (2018) 17-104;
      (b) P. Ruiz-Castillo, S.L. Buchwald, Chem. Rev. 116 (2016) 12564-12649;
      (c) J. Bariwal, E. Van der Eycken, Chem. Soc. Rev. 42 (2013) 9283-9303.

    6. [6]

      (a) D.P. Hari, P. Caramenti, J. Waser, Acc. Chem. Res. 51 (2018) 3212-3225;
      (b) A. Yoshimura, V.V. Zhdankin, Chem. Rev. 116 (2016) 3328-3435;
      (c) Y. Li, D.P. Hari, M.V. Vita, J. Waser, Angew. Chem. Int. Ed. 55 (2016) 4436-4454;
      (d) J. Waser, Synlett. 27 (2016) 2761-2773;
      (e) J.P. Brand, D.F. González, S. Nicolai, J. Waser, Chem. Commun. (Camb.) 47 (2011) 102-115;
      (f) V.V. Zhdankin, Curr. Org. Synth. 2 (2005) 121-145.

    7. [7]

      (a) V.V. Zhdankin, A.P. Krasutsky, C.J. Kuehl, et al., J. Am. Chem. Soc. 118 (1996) 5192-5197;
      (b) M.V. Vita, J. Waser, Org. Lett. 15 (2013) 3246-3249;
      (c) A. Sharma, J.F. Hartwig, Nature 517 (2015) 600-604.

    8. [8]

      (a) V.V. Zhdankin, M. McSherry, B. Mismash, et al., Tetrahedron Lett. 38 (1997) 21-24;
      (b) X.H. Hu, X.F. Yang, T.P. Loh, ACS Catal. 6 (2016) 5930-5934.

    9. [9]

      K. Kiyokawa, T. Kosaka, T. Kojima, S. Minakata, Angew. Chem. Int. Ed. 54 (2015) 13719-13723.  doi: 10.1002/anie.201506805

    10. [10]

      (a) H. Wang, D. Zhang, H. Sheng, C. Bolm, J. Org. Chem. 82 (2017) 11854-11858;
      (b) H. Wang, D. Zhang, H. Sheng, C. Bolm, Chem. -Eur. J. 24 (2018) 14942-14945.

    11. [11]

      (a) P. Caramenti, S. Nicolai, J. Waser, Chem. -Eur. J. 23 (2017) 14702-14706;
      (b) P. Caramenti, R.K. Nandi, J. Waser, Chem. -Eur. J. 24 (2018) 10049-10053.

    12. [12]

      (a) S. Cai, C. Chen, Z. Sun, C. Xi, Chem. Commun. (Camb.) 49 (2013) 4552-4554;
      (b) J. Xie, X. Yuan, A. Abdukader, C. Zhu, J. Ma, Org. Lett. 16 (2014) 1768-1771;
      (c) Y. Kuninobu, M. Nishi, M. Kanai, Org. Biomol. Chem. 14 (2016) 8092-8100;
      (d) X. Gao, Y. Geng, S. Han, et al., Org. Lett. 20 (2018) 3732-3735.

  • 加载中
    1. [1]

      Pengcheng SuShizheng ChenZhihong YangNingning ZhongChenzi JiangWanbin Li . Vapor-phase postsynthetic amination of hypercrosslinked polymers for efficient iodine capture. Chinese Chemical Letters, 2024, 35(9): 109357-. doi: 10.1016/j.cclet.2023.109357

    2. [2]

      Yanqi WuYuhong GuanPeilin HuangHui ChenLiping BaiZhihong Jiang . Preparation of norovirus GII loop mediated isothermal amplification freeze-drying microsphere reagents and its application in an on-site integrated rapid detection platform. Chinese Chemical Letters, 2024, 35(9): 109308-. doi: 10.1016/j.cclet.2023.109308

    3. [3]

      Yue SunLiming YangYaohang ChengGuanghui AnGuangming Li . Pd(I)-catalyzed ring-opening arylation of cyclopropyl-α-aminoamides: Access to α-ketoamide peptidomimetics. Chinese Chemical Letters, 2024, 35(6): 109250-. doi: 10.1016/j.cclet.2023.109250

    4. [4]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

    5. [5]

      Rong-Nan YiWei-Min He . Electron donor-acceptor complex enabled arylation of dithiocarbamate anions with thianthrenium salts under aqueous micellar conditions. Chinese Chemical Letters, 2024, 35(11): 110194-. doi: 10.1016/j.cclet.2024.110194

    6. [6]

      Yajun HouChuanzheng ZhuQiang WangXiaomeng ZhaoKun LuoZongshuai GongZhihao Yuan . ~2.5 nm pores in carbon-based cathode promise better zinc-iodine batteries. Chinese Chemical Letters, 2024, 35(5): 108697-. doi: 10.1016/j.cclet.2023.108697

    7. [7]

      Xinyi CaoYucheng JinHailong WangXu DingXiaolin LiuBaoqiu YuXiaoning ZhanJianzhuang Jiang . A tetraaldehyde-derived porous organic cage and covalent organic frameworks: Syntheses, structures, and iodine vapor capture. Chinese Chemical Letters, 2024, 35(9): 109201-. doi: 10.1016/j.cclet.2023.109201

    8. [8]

      Dongying FuLin PanYanli MaYue Zhang . Bilayered Dion–Jacobson lead-iodine hybrid perovskite with aromatic spacer for broadband photodetection. Chinese Chemical Letters, 2025, 36(2): 109621-. doi: 10.1016/j.cclet.2024.109621

    9. [9]

      Muhammad Riaz Rakesh Kumar Gupta Di Sun Mohammad Azam Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427

    10. [10]

      Zhanhui Yang Jiaxi Xu . (m+n+…) or [m+n+…]cycloaddition?. University Chemistry, 2025, 40(3): 387-389. doi: 10.12461/PKU.DXHX202406032

    11. [11]

      Le Ye Wei-Xiong Zhang . Structural phase transition in a new organic-inorganic hybrid post-perovskite: (N,N-dimethylpyrrolidinium)[Mn(N(CN)2)3]. Chinese Journal of Structural Chemistry, 2024, 43(6): 100257-100257. doi: 10.1016/j.cjsc.2024.100257

    12. [12]

      Xingfen HuangJiefeng ZhuChuan He . Catalytic enantioselective N-silylation of sulfoximine. Chinese Chemical Letters, 2024, 35(4): 108783-. doi: 10.1016/j.cclet.2023.108783

    13. [13]

      Sanmei WangYong ZhouHengxin FangChunyang NieChang Q SunBiao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476

    14. [14]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    15. [15]

      Lijun MaoShuo LiXin ZhangZhan-Ting LiDa Ma . Cucurbit[n]uril-based nanostructure construction and modification. Chinese Chemical Letters, 2024, 35(8): 109363-. doi: 10.1016/j.cclet.2023.109363

    16. [16]

      Jialin CaiYizhe ChenRuiwen ZhangCheng YuanZeyu JinYongting ChenShiming ZhangJiujun Zhang . Interfacial Pt-N coordination for promoting oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(2): 110255-. doi: 10.1016/j.cclet.2024.110255

    17. [17]

      Yan GuoHongtao BianLe YuJiani MaYu Fang . Photochemical reaction mechanism of benzophenone protected guanosine at N7 position. Chinese Chemical Letters, 2025, 36(3): 109971-. doi: 10.1016/j.cclet.2024.109971

    18. [18]

      Jianhui YinWenjing HuangChangyong GuoChao LiuFei GaoHonggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244

    19. [19]

      Yun-Xin HuangLin-Qian YuKe-Yu ChenHao WangShou-Yan ZhaoBao-Cheng HuangRen-Cun Jin . Biochar with self-doped N to activate peroxymonosulfate for bisphenol-A degradation via electron transfer mechanism: The active edge graphitic N site. Chinese Chemical Letters, 2024, 35(9): 109437-. doi: 10.1016/j.cclet.2023.109437

    20. [20]

      Weichen ZhuWei ZuoPu WangWei ZhanJun ZhangLipin LiYu TianHong QiRui Huang . Fe-N-C heterogeneous Fenton-like catalyst for the degradation of tetracycline: Fe-N coordination and mechanism studies. Chinese Chemical Letters, 2024, 35(9): 109341-. doi: 10.1016/j.cclet.2023.109341

Metrics
  • PDF Downloads(12)
  • Abstract views(1016)
  • HTML views(113)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return