Citation: Bao Wen-Hu, Wang Zheng, Tang Xiao, Zhang Yun-Fu, Tan Jia-Xi, Zhu Qin, Cao Zhong, Lin Ying-Wu, He Wei-Min. Clean preparation of S-thiocarbamates with in situ generated hydroxide in 2-methyltetrahydrofuran[J]. Chinese Chemical Letters, ;2019, 30(12): 2259-2262. doi: 10.1016/j.cclet.2019.06.052 shu

Clean preparation of S-thiocarbamates with in situ generated hydroxide in 2-methyltetrahydrofuran

    * Corresponding author.
    E-mail address: weiminhe2016@yeah.net (W.-M. He).
    1 These two authors contributed equally to this work.
  • Received Date: 3 June 2019
    Revised Date: 23 June 2019
    Accepted Date: 27 June 2019
    Available Online: 28 December 2019

Figures(5)

  • A simple and clean protocol for the synthesis of various alkyl and (hetero)aryl S-thiocarbamates was established. The usage of in situ generated hydroxide as both an oxygen source and hydrogen source as well as biomass-derived 2-methyltetrahydrofuran as a green reaction medium, the avoidance of phosphorus-containing reductant, and the generation of harmless water and nitrogen as the sideproducts have given the present method atom-economy and environmental friendliness.
  • 加载中
    1. [1]

      Y. Gu, F. Jerome, Chem. Soc. Rev. 42 (2013) 9550-9570.  doi: 10.1039/c3cs60241a

    2. [2]

      (a) J. Yang, J.N. Tan, Y. Gu, Green Chem. 14 (2012) 3304-3317;
      (b) R. Bai, P. Liu, J. Yang, C. Liu, Y. Gu, ACS Sustainable Chem. Eng. 3 (2015) 1292-1297;
      (c) S.G. Zhang, Z.B. Xie, L.S. Liu, M. Liang, Z.G. Le, Chin. Chem. Lett. 28 (2017) 101-104;
      (d) G. Gao, P. Wang, P. Liu, et al., Chin. J. Org. Chem. 38 (2018) 846-854;
      (e) L. Li, Q. Chen, X. Xiong, et al., Chin. Chem. Lett. 29 (2018) 1893-1896.

    3. [3]

      (a) H. Li, C. Liu, Y. Zhang, et al., Org. Lett. 17 (2015) 932-935;
      (b) D. Cao, Y. Zhang, C. Liu, et al., Org. Lett. 18 (2016) 2000-2003;
      (c) B. Lai, R. Bai, Y. Gu, ACS Sustainable Chem. Eng. 6 (2018) 17076-17086;
      (d) G.P. Yang, X. Wu, B. Yu, C. Hu, ACS Sustainable Chem. Eng. 7 (2019) 3727-3732;
      (e) D.Q. Dong, W.J. Chen, Y. Yang, X. Gao, Z.L. Wang, Chem. Select 4 (2019) 2480-2483.

    4. [4]

      (a) R. Mohebat, A. Yazdani-Elah-Abadi, M. Malek-Taher, N. Hazeri, Chin. Chem. Lett. 28 (2017) 943-948;
      (b) L.Y. Xie, Y. Duan, L.H. Lu, et al., ACS Sustainable Chem. Eng. 5 (2017) 10407-10412;
      (c) Q.Q. Xuan, Y.H. Wei, Q.L. Song, Chin. Chem. Lett. 28 (2017) 1163-1166;
      (d) D.Q. Dong, S.H. Hao, H. Zhang, Z.L. Wang, Chin. Chem. Lett. 28 (2017) 1597-1599;
      (e) M. Zhang, Q.Y. Fu, G. Gao, et al., ACS Sustainable Chem. Eng. 5 (2017) 6175-6182;
      (f) H. Cui, W. Wei, D. Yang, et al., Green Chem. 19 (2017) 3520-3524;
      (g) K. Sun, X.L. Chen, S.J. Li, et al., J. Org. Chem. 83 (2018) 14419-14430;
      (h) P. Bao, L. Wang, Q. Liu, et al., Tetrahedron Lett. 60 (2019) 214-218;
      (i) Y. Liu, L. Chen, Z. Wang, et al., J. Org. Chem. 84 (2019) 204-215;
      (j) Y. Zheng, M. Liu, G. Qiu, W. Xie, J. Wu, Tetrahedron 75 (2019) 1663-1668;
      (k) Y.H. Wang, B. Ouyang, G. Qiu, H. Zhou, J.B. Liu, Org. Biomol. Chem. 17 (2019) 4335-4341;
      (l) K. Sun, S.J. Li, X.L. Chen, et al., Chem. Commun. 55 (2019) 2861-2864;
      (m) J. Li, W. Tang, D. Ren, J. Xu, Z. Yang, Green Chem. 21 (2019) 2088-2094;
      (n) Y.C. Wang, R.X. Wang, G. Qiu, et al., Org. Chem. Front. 6 (2019) 2471-2479.

    5. [5]

      A.D. Mamuye, S. Monticelli, L. Castoldi, W. Holzer, V. Pace, Green Chem. 17 (2015) 4194-4197.  doi: 10.1039/C5GC01002K

    6. [6]

      (a) W. Xie, S. Xie, Y. Zhou, et al., Eur. J. Med. Chem. 81 (2014) 22-27;
      (b) X. Gong, J. Chen, X. Li, W. Xie, J. Wu, Chem. -Asian J. 13 (2018) 2543-2548;
      (c) W. Xie, Y. Wu, J. Zhang, et al., Eur. J. Med. Chem. 145 (2018) 35-40;
      (d) L. Xue, Y. Liu, W. Qin, H. Yan, Chin. Chem. Lett. 29 (2018) 1215-1218;
      (e) Q. Liang, Y. Zhang, M. Zeng, et al., Toxicol. Res. 7 (2018) 521-528;
      (f) G. Xiao, H. Min, Z. Zheng, G. Deng, Y. Liang, Chin. Chem. Lett. 29 (2018) 1363-1366;
      (g) Q. Liu, L. Wang, H. Yue, et al., Green Chem. 21 (2019) 1609-1603;
      (h) H. Jiang, X. Tang, Z. Xu, et al., Org. Biomol. Chem. 17 (2019) 2715-2720;
      (i) J. Xu, W. Huang, R. Bai, et al., Green Chem. 21 (2019) 2061-2069;
      (j) L. Wang, M. Zhang, Y. Zhang, et al., Chin. Chem. Lett. (2019), doi: http://dx.doi.org/10.1016/j.cclet.2019.05.041;
      (k) D.Q. Dong, L.X. Li, G.H. Li, Q. Deng, Z.L. Wang, Chin. J. Catal. 40 (2019) 1494-1498;
      (l) Y. Liu, X.L. Chen, K. Sun, et al., Org. Lett. 21 (2019) 4019-4024;
      (m) A. El-Harairy, Y. Qi, B. Lai, et al., Adv. Synth. Catal. 361 (2019) 3342-3350;
      (n) C. Zhu, D. Wei, Y. Wu, et al., J. Alloys Compd. 778 (2019) 731-740;
      (o) F.L. Zeng, X.L. Chen, S.Q. He, et al., Org. Chem. Front. 6 (2019) 1476-1480;
      (p) X.M. Xu, D.M. Chen, Z.L. Wang, Chin. Chem. Lett. (2019), doi: http://dx.doi.org/10.1016/j.cclet.2019.05.048;
      (q) X. Gong, G. Li, Z. Gan, et al., Asian J. Org. Chem. 8 (2019) 1472-1478.

    7. [7]

      (a) T. Mizuno, I. Nishiguchi, T. Okushi, T. Hirashima, Tetrahedron Lett. 32 (1991) 6867-6868;
      (b) A.W. Erian, S.M. Sherif, Tetrahedron 55 (1999) 7957-8024;
      (c) J. Zhu, B. Xu, J. Yu, et al., Org. Biomol. Chem. 16 (2018) 5999-6005.

    8. [8]

      (a) R.S. Pathare, V. Patil, H. Kaur, et al., Org. Biomol. Chem. 16 (2018) 8263-8266;
      (b) W.H. Bao, C. Wu, J.T. Wang, et al., Org. Biomol. Chem. 16 (2018) 8403-8407;
      (c) W. Wei, P. Bao, H. Yue, et al., Org. Lett. 20 (2018) 5291-5295;
      (d) X. Gong, X. Li, W. Xie, J. Wu, S. Ye, Org. Chem. Front. 6 (2019) 1863-1867.

    9. [9]

      (a) G. Li, Z. Gan, K. Kong, X. Dou, D. Yang, Adv. Synth. Catal. 361 (2019) 1808-1814;
      (b) Y. Zong, Y. Lang, M. Yang, et al., Org. Lett. 21 (2019) 1935-1938;
      (c) X.Q. Chu, D. Ge, T.P. Loh, Z.L. Shen, Org. Chem. Front. 6 (2019) 835-840;
      (d) X. Wang, M. Yang, W. Xie, X. Fan, J. Wu, Chem. Commun. 55 (2019) 6010-6013;
      (e) G.H. Li, D.Q. Dong, Q. Deng, S.Q. Yan, Z.L. Wang, Synthesis 51 (2019) 3313-3319;
      (f) F.S. He, Y. Wu, X. Li, H. Xia, J. Wu, Org. Chem. Front. 6 (2019) 1873-1878;
      (g) K. Sun, Z. Shi, Z. Liu, et al., Org. Lett. 20 (2018) 6687-6690;
      (h) J. Zhang, X. Li, W. Xie, S. Ye, J. Wu, Org. Lett. 21 (2019) 4950-4954;
      (i) S. Ye, T. Xiang, X. Li, J. Wu, Org. Chem. Front. 6 (2019) 2183-2199.

    10. [10]

      P. Bao, L. Wang, H. Yue, et al., J. Org. Chem. 84 (2019) 2976-2983.  doi: 10.1021/acs.joc.8b02844

    11. [11]

      W.H. Bao, M. He, J.T. Wang, et al., J. Org. Chem. 84 (2019) 6065-6071.  doi: 10.1021/acs.joc.9b00178

    12. [12]

      (a) L.Y. Xie, S. Peng, T.G. Fan, et al., Sci. China Chem. 62 (2019) 460-464;
      (b) Y. You, K. Zhou, B. Guo, et al., ACS Sens. 4 (2019) 774-779;
      (c) T.Y. Shang, L.H. Lu, Z. Cao, et al., Chem. Commun. 55 (2019) 5408-5419;
      (d) L.H. Lu, Z. Wang, W. Xia, et al., Chin. Chem. Lett. 30 (2019) 1237-1240;
      (e) L. Peng, Z. Hu, Q. Lu, et al., Chin. Chem. Lett. (2019), doi: http://dx.doi.org/10.1016/j.cclet.2019.05.063;
      (f) Q. Zhu, C. Liu, L. Zhou, et al., Biosens. Bioelectron. 140 (2019) 111356;
      (g) K.J. Liu, Z.H. Duan, X.L. Zeng, et al., ACS Sustainable Chem. Eng. 7 (2019) 10293-10298;
      (h) L.Y. Xie, T.G. Fang, J.X.T. Tan, et al., Green Chem. 21 (2019) 3858-3863;
      (i) L.Y. Xie, L.L. Jiang, J.X. Tan, et al., ACS Sustainable Chem. Eng. 7 (2019) 14153-14160.

    13. [13]

      (a) W. Zhao, P. Xie, Z. Bian, et al., J. Org. Chem. 80 (2015) 9167-9175;
      (b) X. Pang, L. Xiang, X. Yang, R. Yan, Adv. Synth. Catal. 358 (2016) 321-325.

  • 加载中
    1. [1]

      Liyang Qin Luna Wu Jinlin Long . Advancements in photocatalytic hydrogen peroxide synthesis: overcoming challenges for a sustainable future. Chinese Journal of Structural Chemistry, 2025, 44(4): 100545-100545. doi: 10.1016/j.cjsc.2025.100545

    2. [2]

      Xuexia LinYihui ZhouJiafu HongXiaofeng WeiBin LiuChong-Chen Wang . Facile preparation of ZIF-8/ZIF-67-derived biomass carbon composites for highly efficient electromagnetic wave absorption. Chinese Chemical Letters, 2024, 35(9): 109835-. doi: 10.1016/j.cclet.2024.109835

    3. [3]

      Jia-Cheng HouHong-Tao JiYu-Han LuJia-Sheng WangYao-Dan XuYan-Yan ZengWei-Min He . Sustainable and practical semi-heterogeneous photosynthesis of 5-amino-1,2,4-thiadiazoles over WS2/TEMPO. Chinese Chemical Letters, 2024, 35(8): 109514-. doi: 10.1016/j.cclet.2024.109514

    4. [4]

      Yuchen Wang Zhenhao Xu Kai Yan . Rational design of metal-metal hydroxide interface for efficient electrocatalytic oxidation of biomass-derived platform molecules. Chinese Journal of Structural Chemistry, 2025, 44(1): 100418-100418. doi: 10.1016/j.cjsc.2024.100418

    5. [5]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    6. [6]

      Yunchao Li Shanying Chen Ke Qi Kangning Huo Shuxin Li Jingyi Li Ying Wei Louzhen Fan . A New Colloid Electrophoresis Experiment Incorporating Characteristics of Inquiry Learning and Ideological and Political Education. University Chemistry, 2024, 39(2): 47-51. doi: 10.3866/PKU.DXHX202308063

    7. [7]

      Jinglin CHENGXiaoming GUOTao MENGXu HULiang LIYanzhe WANGWenzhu HUANG . NiAlNd catalysts for CO2 methanation derived from the layered double hydroxide precursor. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1592-1602. doi: 10.11862/CJIC.20240152

    8. [8]

      Junqi WangShuai ZhangJingjing MaXiangjun LiuYayun MaZhimin FanJingfeng Wang . Augmenting levoglucosan production through catalytic pyrolysis of biomass exploiting Ti3C2Tx MXene. Chinese Chemical Letters, 2024, 35(12): 109725-. doi: 10.1016/j.cclet.2024.109725

    9. [9]

      Xuehua SUNMin MAJianting LIURui TIANHongmei CHAIHuali CUILoujun GAO . Pr/N co-doped biomass carbon dots with enhanced fluorescence for efficient detection of 2,4-dinitrophenylhydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 561-573. doi: 10.11862/CJIC.20240294

    10. [10]

      Zongyi HuangCheng GuoQuanxing ZhengHongliang LuPengfei MaZhengzhong FangPengfei SunXiaodong YiZhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580

    11. [11]

      Zhilian Liu Wengui Wang Hongxiao Yang Yu Cui Shoufeng Wang . Ideological and Political Education Design for the Synthesis of Irinotecan Drug Intermediate 7-Ethyl Camptothecin. University Chemistry, 2024, 39(2): 89-93. doi: 10.3866/PKU.DXHX202306012

    12. [12]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    13. [13]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    14. [14]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    15. [15]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    16. [16]

      Yiming Lu Xiang Xie Xiaoqing Qiu Yang Liu Xinyuan Cheng . The New Year’s Eve of the Aviation Brake Material Family. University Chemistry, 2024, 39(9): 203-207. doi: 10.12461/PKU.DXHX202403061

    17. [17]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    18. [18]

      Jihua Deng Xinshi Wu Dichang Zhong . Exploration of Green Teaching and Ideological and Political Education in Chemical Experiment of “Preparation of Ammonium Ferrous Sulfate”. University Chemistry, 2024, 39(10): 325-329. doi: 10.12461/PKU.DXHX202405046

    19. [19]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    20. [20]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

Metrics
  • PDF Downloads(4)
  • Abstract views(605)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return