Citation: Liu Feng, Li Cheng, Li Junyu, Wang Chao, Xiao Chengyi, Wu Yonggang, Li Weiwei. Ternary organic solar cells based on polymer donor, polymer acceptor and PCBM components[J]. Chinese Chemical Letters, ;2020, 31(3): 865-868. doi: 10.1016/j.cclet.2019.06.051 shu

Ternary organic solar cells based on polymer donor, polymer acceptor and PCBM components

    * Corresponding authors.
    ** Corresponding author at: State Key Laboratory of Organic-Inorganic Composites Beijing University of Chemical Technology Beijing 100029 China.
    E-mail addresses: (C. Xiao) (Y. Wu) (W. Li).
  • Received Date: 11 June 2019
    Revised Date: 26 June 2019
    Accepted Date: 26 June 2019
    Available Online: 1 March 2020


  • In this work, ternary organic solar cells (OSCs) combining a fullerene derivative PC71BM with a nonfullerene acceptor N2200-F blended with a polymer donor PM6 were reported. Compared with the binary systems, the highest power conversion efficiency (PCE) of 8.11% was achieved in ternary solar cells with 30 wt% N2200-F content, mainly due to the improved short-circuit current density (Jsc) and fill factor (FF). Further studies showed that the improved Jsc could attribute to the complementary absorption of the two acceptors and the enhanced FF was originated from the higher hole mobility and the fine-tuned morphology in the ternary system. These results demonstrate that the combination of fullerene and nonfullerene acceptors in ternary organic solar cells is a promising approach to achieve high-performance OSCs.
  • 加载中
    1. [1]

      G. Yu, J. Gao, J.C. Hummelen, F. Wudl, A.J. Heeger, Science 270(1995) 1789-1791.  doi: 10.1126/science.270.5243.1789

    2. [2]

      (a) J.K. Lee, W.L. Ma, A.J. Heeger, et al., J. Am. Chem. Soc.130(2008) 3619-3623;
      (b) J.B. Zhao, W. Ma, H. Yan, et al., Nat. Energy 1(2016) 15027;
      (c) L.T. Dou, Y.S. Liu, Z.R. Hong, G. Li, Y. Yang, Chem. Rev. 115(2015) 12633-12665;
      (d) Y.F. Li, Acc. Chem. Res. 45(2012) 723-733;
      (e) L.Y. Lu, T.Y. Zheng, L.P. Yu, et al., Chem. Rev. 115(2015) 12666-12731;
      (f) H.F. Yao, L. Ye, J.H. Hou, et al., Chem. Rev. 116(2016) 7397-7457;
      (g) J.S. Song, Z.S. Bo, Sci. China Chem. 62(2019) 9-13.

    3. [3]

      G.Y. Zhang, J.B. Zhao, H. Yan, et al., Chem. Rev. 118(2018) 3447-3507.  doi: 10.1021/acs.chemrev.7b00535

    4. [4]

      Y.Z. Lin, J.Y. Wang, X.W. Zhan, et al., Adv. Mater. 27(2015) 1170-1174.  doi: 10.1002/adma.201404317

    5. [5]

      (a) C.Q. Yan, S. Barlow, X.W. Zhan, et al., Nat. Rev. Mater. 3(2018) 18003;
      (b) J.Q. Zhang, H.S. Tan, X.G. Guo, A. Facchetti, H. Yan, Nat. Energy 3(2018) 720-731;
      (c) J. Yuan, Y.Q. Zhang, Y.P. Zou, et al., Joule 3(2019) 1140-1151.

    6. [6]

      (a) Y. Cui, H.F. Yao, J.Q. Zhang, et al., Nat. Commun. 10(2019) 2515;
      (b) X.P. Xu, W. Ma, Q. Peng, et al., Adv. Mater. (2019) 1901872.

    7. [7]

      (a) Q.S. An, F.J. Zhang, B. Hu, et al., Energy Environ. Sci. 9(2016) 281-322;
      (b) Z.J. Li, W. Zhang, Q. Peng, et al., J. Mater. Chem. C: Mater. Opt. Electron. Devices 6(2018) 9119-9129;
      (c) X.P. Xu, W. Ma, Q. Peng, et al., Adv. Mater. 29(2017) 1704271;
      (d) C.P. Chen, Y.Y. Tsai, Y.C. Chen, Y.H. Li, Sol. Energy 176(2018) 170-177.

    8. [8]

      (a) J.Q. Mai, T.K. Lau, X.H. Lu, et al., Chem. Mater. 28(2016) 6186-6195;
      (b) L. Zhong, H.J. Bin, Y.F. Li, et al., J. Mater. Chem. A Mater. Energy Sustain. 6(2018) 24814-24822.

    9. [9]

      (a) T. Zhang, X.L. Zhao, D.L. Yang, Y.M. Tian, X.N. Yang, Adv. Energy Mater. 8(2018) 1701691;
      (b) Z.C. Zhou, F. Liu, X.Z. Zhu, et al., Nat. Energy 3(2018) 952-959.

    10. [10]

      (a) Y.T. Guo, A.D. Zhang, C. Li, W.W. Li, D.B. Zhu, Chin. Chem. Lett. 29(2018) 371-373;
      (b) C.S. Yu, C. Li, W.W. Li, et al., Chin. Chem. Lett. 29(2018) 325-327;
      (c) C.S. Yu, J.Y. Li, W.W. Li, Chin. J. Chem. 36(2018) 515-518;
      (d) S.C. Zhou, Y.G. Wu, W.W. Li, et al., Acta Phys. Chim. Sin. 34(2018) 344-347;
      (e) Y. Li, Y.H. Xu, W.W. Li, et al., Chin. Chem. Lett. 30(2019) 222-224;
      (f) F. Yang, C. Li, W.W. Li, et al., Chin. J. Polym. Sci. 35(2017) 239-248.

    11. [11]

      (a) W.B. Lai, C. Li, W.W. Li, et al., Chem. Mater. 29(2017) 7073-7077;
      (b) G.T. Feng, J.Y. Li, W.W. Li, et al., J. Am. Chem. Soc.139(2017) 18647-18656;
      (c) G.T. Feng, J.Y. Li, Y.K. He, et al., Joule 3(2019) 1765-1781.

    12. [12]

      (a) S.Q. Zhang, Y.P. Qin, J. Zhu, J.H. Hou, Adv. Mater. 30(2018) 1800868;
      (b) J.W. Jung, J.W. Jo, A.K.Y. Jen, et al., Adv. Mater. 27(2015) 3310-3317.

  • 加载中
    1. [1]

      Xie ShenkunWang JianqiuWang RongZhang DongyangZhou HuiqiongZhang YuanZhou Defeng . Effects of processing additives in non-fullerene organic bulk heterojunction solar cells with efficiency >11%. Chinese Chemical Letters, 2019, 30(1): 217-221. doi: 10.1016/j.cclet.2018.04.001

    2. [2]

      Wen ZhenchuanMa XuejianYang XiaoyuBi PengqingNiu MengsiZhang KangningFeng LinHao Xiaotao . Effects of various donor: acceptor blend ratios on photophysical properties in non-fullerene organic bulk heterojunctions. Chinese Chemical Letters, 2019, 30(5): 995-999. doi: 10.1016/j.cclet.2019.01.028

    3. [3]

      Jian Li HUA Fang DING Fan Shun MENG He TIAN . Synthesis of a Novel Organic Soluble and Thermal-stable Fullerene-perylene Dyad. Chinese Chemical Letters, 2004, 15(11): 1373-1376.

    4. [4]

      Jian Ming XU Wei Xiang CHEN Zhu De XU . Preparation and Characterization of Fullerene C60 and Phthalocyanine Co-grafted Poly (epoxy propyl carbazole). Chinese Chemical Letters, 2001, 12(8): 679-682.

    5. [5]

      Xuan ZhangXu-Dong Li . Effect of the position of substitution on the electronic properties of nitrophenyl derivatives of fulleropyrrolidines:Fundamental understanding toward raising LUMO energy of fullerene electron-acceptor. Chinese Chemical Letters, 2014, 25(4): 501-504. doi: 10.1016/j.cclet.2013.11.050

    6. [6]

      Ya-Nan LiuShi-Fan WangYou-Tian TaoWei Huang . Heavy metal complex containing organic/polymer materials for bulk-heterojunction photovoltaic devices. Chinese Chemical Letters, 2016, 27(8): 1250-1258. doi: 10.1016/j.cclet.2016.07.018

    7. [7]

      Pu Zhang Zhi Xin Guo Shuang Lv . Synthesis and aggregation properties of amphiphilic mono and bisadducts of fullerene in aqueous solution. Chinese Chemical Letters, 2008, 19(9): 1039-1042. doi: 10.1016/j.cclet.2008.06.017

    8. [8]

      Da Dian CHENG Zhen Rong DONG Zhen Yi WU Yong Sheng LIN Sen Gen YANG Meng Xiong ZHAN . New Ruthenium Complexes of Fullerene C60 & C70. Chinese Chemical Letters, 2002, 13(12): 1209-1212.

    9. [9]

      Yu ChangshiXu YunhuaLiang ShijieJiang XudongFeng GuitaoLi ChengLi Weiwei . Ethynyl-linked perylene bisimide based electron acceptors for non-fullerene organic solar cells. Chinese Chemical Letters, 2018, 29(2): 325-327. doi: 10.1016/j.cclet.2017.08.016

    10. [10]

      Xing Xu Hao Chen Xian Rong Cai Ying Li Qing Jiang . Synthesis and properties of polyfluorene copolymers bearing thiophene and porphyrin. Chinese Chemical Letters, 2007, 18(7): 879-882. doi: 10.1016/j.cclet.2007.05.040

    11. [11]

      He PingZhang HantangXu ChunhuiZhen YonggangDong HuanliHu Wenping . Hexyl substitution of pentathienoacene toward a significant improvement in charge transport. Chinese Chemical Letters, 2019, 30(4): 903-905. doi: 10.1016/j.cclet.2019.02.012

    12. [12]

      Xuan ZhangXu-Dong Li . Solvent atmosphere controlled self-assembly of unmodified C60:A facile approach for constructing various architectures. Chinese Chemical Letters, 2014, 25(6): 912-914. doi: 10.1016/j.cclet.2014.03.041

    13. [13]

      Xing-Xing ShenGuang-Chao HanYuan-Ping Yi . Multiscale description of molecular packing and electronic processes in small-molecule organic solar cells. Chinese Chemical Letters, 2016, 27(8): 1453-1463. doi: 10.1016/j.cclet.2016.05.030

    14. [14]

      Yong-Gang ZhenHuan-Li DongLang JiangWen-Ping Hu . Tailoring crystal polymorphs of organic semiconductors towards high-performance field-effect transistors. Chinese Chemical Letters, 2016, 27(8): 1330-1338. doi: 10.1016/j.cclet.2016.06.023

    15. [15]

      Ma XiaoyiYi Yuanping . Electronic polarization in dipolar organic molecular semiconductors: The case study of 1, 2, 3, 4-tetrafluoro-6, 7-dimethylnaphthalene crystal. Chinese Chemical Letters, 2020, 31(3): 797-800. doi: 10.1016/j.cclet.2019.05.024

    16. [16]

      Zai Hong CHEN Jun LIN Nan Feng ZHENG Hut ZHANG . Study on the Inclusion Complex of C60 and Calix [8] arene Tetraphenyl Ether. Chinese Chemical Letters, 1998, 9(12): 1085-1086.

    17. [17]

      Luo MeiZhu CanYuan JunZhou LiuyangKeshtov M.L.Yu Godovsky D.Zou Yingping . A chlorinated non-fullerene acceptor for efficient polymer solar cells. Chinese Chemical Letters, 2019, 30(12): 2343-2346. doi: 10.1016/j.cclet.2019.07.023

    18. [18]

      Guo YitingZhang AndongLi ChengLi WeiweiZhu Daoben . A near-infrared porphyrin-based electron acceptor for non-fullerene organic solar cells. Chinese Chemical Letters, 2018, 29(3): 371-373. doi: 10.1016/j.cclet.2017.08.006

    19. [19]

      Duan YuweiXu XiaopengLi YingPeng Qiang . Recent development of perylene diimide-based small molecular non-fullerene acceptors in organic solar cells. Chinese Chemical Letters, 2017, 28(11): 2105-2115. doi: 10.1016/j.cclet.2017.08.025

    20. [20]

      Li YaoXu YunhuaYang FanJiang XudongLi ChengYou ShengyongLi Weiwei . Simple non-fullerene electron acceptors with unfused core for organic solar cells. Chinese Chemical Letters, 2019, 30(1): 222-224. doi: 10.1016/j.cclet.2018.09.014

  • PDF Downloads(1)
  • Abstract views(82)
  • HTML views(1)

通讯作者: 陈斌,
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By


DownLoad:  Full-Size Img  PowerPoint