Citation: Jin Chaochao, Xu Kun, Fan Xiao, Liu Changyao, Tan Jiajing. Direct benzylic functionalization of pyridines: Palladiumcatalyzed mono-α-arylation of α-(2-pyridinyl)acetates with heteroaryl halides[J]. Chinese Chemical Letters, ;2020, 31(1): 91-94. doi: 10.1016/j.cclet.2019.06.028 shu

Direct benzylic functionalization of pyridines: Palladiumcatalyzed mono-α-arylation of α-(2-pyridinyl)acetates with heteroaryl halides

    * Corresponding author.
    E-mail address: tanjj@mail.buct.edu.cn (J. Tan).
  • Received Date: 9 April 2019
    Revised Date: 10 June 2019
    Accepted Date: 10 June 2019
    Available Online: 22 January 2020

Figures(8)

  • Herein, we report a Pd-catalyzed mono-α-arylation reaction for pyridine benzylic functionalization. This approach serves as an efficient alternative to synthesize di-heteroaryl acetates in good yields and selectivities. Moreover, the method is applicable to heteroaryl substrate combinations, and exhibits great functional group tolerance. A streamlined protocol also enables the rapid synthesis of diheteroaryl ketones. The synthetic value was also demonstrated by scale-up experiments
  • 加载中
    1. [1]

      (a) R.E. Dolle, B.L. Bourdonnec, K. Worm, et al., Comb. Chem. 12 (2010) 765-806;
      (b) A. Facchetti, Chem. Mater. 23 (2011) 733-758;
      (c) L.M. Blair, J. Sperry, J. Nat. Prod. 76 (2013) 794-812;
      (d) E. Vitaku, D.T. Smith, J.T. Njardarson, J. Med. Chem. 57 (2014) 10257-10274;
      (e) U.H.F. Bunz, Acc. Chem. Res. 48 (2015) 1676-1686;
      (f) R.K. Alan, A.R. Christopher, F.V.S. Eric, et al., Comprehensive Heterocyclic Chemistry Ⅲ, Elsevier, Oxford, 2008;
      (g) K.C. Majumdar, S.K. Chattopadhyay, Heterocycles in Natural Product Synthesis, Wiley-VCH, Weinheim, 2011.

    2. [2]

      (a) J. Alvarez-Builla, J.J. Vaquero, J. Barluenga, Modern Heterocyclic Chemistry, Wiley-VCH, Weinheim, 2011;
      (b) M. Baumann, I.R. Baxendale, Beilstein J. Org. Chem. (9) (2013) 2265-2319;
      (c) M.D. Hill, Chem. Eur. J. 16 (2010) 12052-12062;
      (d) J.S. Carey, D. Laffan, C. Thomson, et al., Org. Biomol. Chem. 4 (2006) 2337-2347;
      (e) M. Schlosser, F. Mongin, Chem. Soc. Rev. 36 (2007) 1161-1172;
      (f) L. Ackermann, H.K. Potukuchi, A.R. Kapdi, et al., Chem. Eur. J. 16 (2010) 3300-3303;
      (g) Y.S. Kumar, F.-R.N. Khan, Chin. Chem. Lett. 28 (2017) 1607-1612;
      (h) A.P. Krinochkin, D.S. Kopchuk, N.V. Chepchugov, et al., Chin. Chem. Lett. 28 (2017) 1099-1103.

    3. [3]

      R.A. Aycock, D.B. Vogt, N.T. Jui, Chem. Sci. 8 (2017) 7998-8003.  doi: 10.1039/C7SC03612D

    4. [4]

      (a) A. Kotschy, G. Timári, Heterocycles From Transition Metal Catalysis, Springer, Dordrecht, 2005;
      (b) S. Schröter, C. Stock, T. Bach, Tetrahedron 61 (2005) 2245-2267;
      (c) M. Beller, C. Bolm, Transition Metals for Organic Synthesis: Building Blocks and Fine Chemicals, 2nd ed., Wiley-VCH, Weinheim, 2004.

    5. [5]

      (a) H.-Y. Lin, B.B. Snider, J. Org. Chem. 77 (2012) 4832-4836;
      (b) J.A. Lowe, D.L. Hageman, S.E. Drozda, et al., J. Med. Chem. 37 (1994) 3789-3811;
      (c) J.J. Mousseau, A. Larivée, A.B. Charette, Org. Lett. 10 (2008) 1641-1643;
      (d) S. Duez, A.K. Steib, S.M. Manolikakes, et al., Angew. Chem. Int. Ed. 50 (2011) 7686-7690;
      (e) K.P. Bogeso, A.V. Christensen, J. Hyttel, et al., J. Med. Chem. 28 (1985) 1817-1828.

    6. [6]

      (a) R.B. Woodward, E.C. Kornfeld, Org. Synth. 29 (1949) 44;
      (b) W.G. Kofron, L.M. Baclawski, Org. Synth. 52 (1972) 75;
      (c) R. Zhu, G. Cheng, C. Jia, et al., J. Org. Chem. 81 (2016) 7539-7544.

    7. [7]

      (a) A.T. Londregan, S. Jennings, L. Wei, Org. Lett. 12 (2010) 5254-5257;
      (b) A.T. Londregan, S. Jennings, L. Wei, Org. Lett. 13 (2011) 1840-1843.

    8. [8]

      (a) P.S. Fier, J. Am. Chem. Soc. 139 (2017) 9499-9502;
      (b) D.D. Zhai, X.Y. Zhang, Y.F. Liu, et al., Angew. Chem. Int. Ed. 57 (2018) 1650-1653 and references therein.

    9. [9]

      (a) J.J. Tan, Y. Chen, H. Li, et al., J. Org. Chem. 79 (2014) 8871-8876;
      (b) H.Q. Wang, W.T. Xu, Z.Q. Wang, et al., J. Org. Chem. 80 (2015) 2431-2435;
      (c) L. Liu, C. Tan, R. Fan, et al., Org. Biomol. Chem. 17 (2019) 252-256.

    10. [10]

      (a) S. Lee, N.A. Beare, J.F. Hartwig, J. Am. Chem. Soc. 123 (2001) 8410-8411;
      (b) M. Jorgensen, S. Lee, X. Liu, et al., J. Am. Chem. Soc. 124 (2002) 12557-12565;
      (c) T. Hama, X. Liu, D.A. Culkin, et al., J. Am. Chem. Soc.125 (2003) 11176-11177;
      (d) X. Liu, J.F. Hartwig, J. Am. Chem. Soc. 126 (2004) 5182-5191;
      (e) T. Hama, J.F. Hartwig, Org. Lett. 10 (2008) 1545-1548;
      (f) M.R. Biscoe, S.L. Buchwald, Org. Lett. 11 (2009) 1773-1775;
      (g) T. Hama, D.A. Culkin, J.F. Hartwig, J. Am. Chem. Soc.128 (2006) 4976-4985;
      (h) B. Zheng, T. Jia, P.J. Walsh, Org. Lett. 15 (2013) 4190-4193;
      (i) R. Martin, S.L. Buchwald, Angew. Chem. Int. Ed. 46 (2007) 7236-7239;
      (j) G.D. Vo, J.F. Hartwig, Angew. Chem. Int. Ed. 47 (2008) 2127-2130;
      (k) R. Martin, S.L. Buchwald, Org. Lett. 10 (2008) 4561-4564;
      (l) D.A. Culkin, J.F. Hartwig, Acc. Chem. Res. 36 (2003) 234-245;
      (m) F. Bellina, R. Rossi, Chem. Rev. 110 (2010) 3850;
      (n) C.C.C. Johansson, T.J. Colacot, Angew. Chem. Int. Ed. 49 (2010) 676-707;
      (o) Z. Liu, M. Li, B. Wang, et al., Org. Chem. Front. 5 (2018) 1870-1876;
      (p) G. Gao, Y. Fu, M. Li, et al., Adv. Synth. Catal. 359 (2017) 2890-2894;
      (q) K. Ablajan, G.B. Panetti, X. Yang, et al., Adv. Synth. Catal. 359 (2017) 1927-1932;
      (r) G. Saini, P. Kumar, G.S. Kumar, et al., Org. Lett. 20 (2018) 441-444;
      (s) I. Astarloa, R. SanMartin, M.T. Herrero, et al., Adv. Synth. Catal. 360 (2018) 1711-1718;
      (t) D.J. Leonard, J.W. Ward, J. Clayden, Nature 562 (2018) 105-109.

    11. [11]

      (a) Á. Molnár, Palladium-Catalyzed Coupling Reactions-Practical Aspects and Future Developments, Wiley-WCH, Weinheim, 2013;
      (b) M.L. Crawley, B.M. Trost, Applications of Transition Metal Catalysis in Drug Discovery and Development, Wiley, New York, 2012;
      (c) C. Torborg, M. Beller, Adv. Synth. Catal. 351 (2009) 3027-3043.

    12. [12]

      (a) M.A. Oberli, S.L. Buchwald, Org. Lett. 14 (2012) 4606-4609;
      (b) P.E. Maligres, J. Li, S.W. Krska, et al., Angew. Chem. Int. Ed. 51 (2012) 9071-9074;
      (c) J.C. Tellis, D.N. Primer, G.A. Molander, Science 345 (2014) 433-436.

    13. [13]

      (a) X. Huang, K.W. Anderson, D. Zim, J. Am. Chem. Soc. 125 (2003) 6653-6655;
      (b) N.C. Bruno, M.T. Tudge, S.L. Buchwald, Chem. Sci. 4 (2013) 916-920;
      (c) P. Novak, R. Martin, Curr. Org. Chem. 15 (2011) 3233-3262.

    14. [14]

      (a) C.J. Douglas, L.E. Overman, Proc. Natl. Acad. Sci. U. S. A. 101 (2004) 5363-5367;
      (b) J. Christoffers, A. Baro, Adv. Synth. Catal. 347 (2005) 1473-1482;
      (c) K.W. Quasdorf, L.E. Overman, Nature 516 (2014) 181-191.

    15. [15]

      (a) J. Gu, X. Wang, W. Xue, Org. Chem. Front. 2 (2015) 1411-1421;
      (b) X. Wang, S.Z. Stankovich, R.A. Widenhoefer, Organometallics 21 (2002) 901-905.

    16. [16]

      (a) W.A. Moradi, S.L. Buchwald, J. Am. Chem. Soc. 123 (2001) 7996-8002;
      (b) T. Hama, J.F. Hartwig, Org. Lett. 10 (2008) 1549-1552;
      (c) F. Churruca, R. SanMartin, R. Tellitu, Tetrahedron Lett. 44 (2003) 5925-5929;
      (d) K.B. Urkalan, M.S. Sigman, Angew. Chem. Int. Ed. 48 (2009) 3146-3149;
      (e) F. Churruca, R. SanMartin, M. Carril, Tetrahedron 60 (2004) 2393-2408.

    17. [17]

      G. Favaro, F. Ortica, A. Romani, J. Photochem. Photobiol. C 16 (2013) 22-45.  doi: 10.1016/j.jphotochemrev.2013.03.001

  • 加载中
    1. [1]

      Jin Xian WANG Yu Quan ZHANG . Microwave-assisted Palladium Catalyzed Cross-coupling Reaction of sodium Tetraphenylborate with Carboxylic Anhydrides. Chinese Chemical Letters, 2004, 15(6): 641-642.

    2. [2]

      Hong Wei Yu Qing Song Tong Yi Ru Peng Li Jia Ji Cheng Shi Zi Lin Jin . Preparation of polymer-supported phosphine from ferrocene for palladium-catalyzed Suzuki-Miyaura cross-coupling reactions. Chinese Chemical Letters, 2007, 18(1): 37-40. doi: 10.1016/j.cclet.2006.11.030

    3. [3]

      Lei Zhou Qiu Xiang Xu Huan Feng Jiang . Palladium-catalyzed homo-coupling of boronic acids with supported reagents in supercritical carbon dioxide. Chinese Chemical Letters, 2007, 18(9): 1043-1046. doi: 10.1016/j.cclet.2007.06.023

    4. [4]

      Yi Min HU Yu ZHANG Jian Lin HAN Cheng Jian ZHU Yi PAN . Palladium-catalyzed Cascade Cyclization-Coupling Reaction of Benzyl Halides with N,N-Diallylbenzoylamide. Chinese Chemical Letters, 2003, 14(8): 771-772.

    5. [5]

      Qiu Hua Xu Ping Ping Wang Ming Zhong Cai . A facile approach to asymmetrical biaryls via coupling reaction of aryl halides with sodium tetraphenylborate catalyzed by MCM-41-supported sulfur palladium(0) complex. Chinese Chemical Letters, 2007, 18(4): 387-389. doi: 10.1016/j.cclet.2007.01.046

    6. [6]

      Qing-Han LiYong DingXue-Jun Yang . Nickel-catalyzed cross-coupling reaction of alkynyl bromides with Grignard reagents. Chinese Chemical Letters, 2014, 25(9): 1296-1300. doi: 10.1016/j.cclet.2014.04.019

    7. [7]

      Sara SobhaniFarzaneh Zarifi . Pd-isatin Schiff base complex immobilized on γ-Fe2O3 as a magnetically recyclable catalyst for the Heck and Suzuki cross-coupling reactions. Chinese Journal of Catalysis, 2015, 36(4): 555-563. doi: 10.1016/S1872-2067(14)60291-6

    8. [8]

      Yang-Qiu PengLai-Chun LuoJiao GongJian HuangQi Sun . New synthetic approach for the preparation of 2-aryl-thiazolo[4,5-b]pyridines via Liebeskind-Srogl reaction. Chinese Chemical Letters, 2015, 26(8): 1016-1018. doi: 10.1016/j.cclet.2015.05.012

    9. [9]

      Chun LiuShao-Ke ZhangYi-Xia ZhangZi-Lin Jin . Arylation of pyridine N-oxides via a ligand-free Suzuki reaction in water. Chinese Chemical Letters, 2015, 26(1): 55-57. doi: 10.1016/j.cclet.2014.09.019

    10. [10]

      Huan Sheng Chen Xia Ping Ma Zhi Ming Li Quan Rui Wang Feng Gang Tao . An effective synthesis of β-aryl substituted isotetronic acids via Suzuki coupling. Chinese Chemical Letters, 2008, 19(11): 1309-1311. doi: 10.1016/j.cclet.2008.09.016

    11. [11]

      Shou Wen Jin Bin Liu Wan Zhi Chen . Pd(OAc)2 catalyzed synthesis of heteroaryl-substituted 1,8-naphthyridine derivatives via C-N-coupling reactions of chloronaphthyridines. Chinese Chemical Letters, 2007, 18(4): 383-386. doi: 10.1016/j.cclet.2007.01.024

    12. [12]

      Chuan Zhou Tao Juan Li Xin Cui Yao Fu Qing Xiang Guo . Cu-catalyzed cross-couplings under ligandless conditions. Chinese Chemical Letters, 2007, 18(10): 1199-1202. doi: 10.1016/j.cclet.2007.07.016

    13. [13]

      Mohammad Ali TaherZahra DaliriHamid Fazelirad . Simultaneous extraction and preconcentration of copper, silver and palladium with modified alumina and their determination by electrothermal atomic absorption spectrometry. Chinese Chemical Letters, 2014, 25(4): 649-654. doi: 10.1016/j.cclet.2013.12.025

    14. [14]

      Yan Qing Cong Zu Cheng Wu . Self-regeneration of activated carbon modified with palladium catalyst for electrochemical dechlorination. Chinese Chemical Letters, 2007, 18(8): 1013-1016. doi: 10.1016/j.cclet.2007.05.039

    15. [15]

      Xi LuBin XiaoRui ShangLei Liu . Synthesis of unnatural amino acids through palladium-catalyzed C(sp3)-H functionalization. Chinese Chemical Letters, 2016, 27(03): 305-311. doi: 10.1016/j.cclet.2015.12.021

    16. [16]

      Ding Zhong Yuan Qiu Yu Zhang Jin Bo Dou . Macroporous magnetic poly (GMA-EGDMA-DVB) microspheres supported palladium complex as an efficient catalyst for Heck reaction. Chinese Chemical Letters, 2010, 21(9): 1062-1066. doi: 10.1016/j.cclet.2010.04.025

    17. [17]

      Dan Xu Zhi Hua Liu Wei Jun Tang Jun Mo Li Jin Xu . Palladium-catalyzed highly regioselective Heck reaction of aryl nonaflates with electron-rich olefins. Chinese Chemical Letters, 2008, 19(9): 1017-1020. doi: 10.1016/j.cclet.2008.06.004

    18. [18]

      Tian Song Huang Yan Hua Wang Jing Yang Jiang Zi Lin Jin . PEG-stabilized palladium nanoparticles: An efficient and recyclable catalyst for the selective hydrogenation of 1,5-cyclooctadiene in thermoregulated PEG biphase system. Chinese Chemical Letters, 2008, 19(1): 102-104. doi: 10.1016/j.cclet.2007.10.042

    19. [19]

      Qing Lu Zhao Lai Lai Wang . A novel ligand-free palladium catalytic system with SO3H-functional ionic liquids as cocatalyst for amidocarbonylation reaction. Chinese Chemical Letters, 2008, 19(10): 1175-1178. doi: 10.1016/j.cclet.2008.07.005

    20. [20]

      Xue-Zhi ChengWei LiuZhen-Dong HuangChun-Xiang Kuang . Sodium hydride-mediated synthesis of 1,5-diaryl-1,2,3-triazoles from anti-3-aryl-2,3-dibromopropanoic acids and organic azides. Chinese Chemical Letters, 2013, 24(8): 764-766.

Metrics
  • PDF Downloads(4)
  • Abstract views(121)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return