Citation: Zhuang Hongfeng, Li Heng, Zhang Shuai, Yin Yanbin, Han Feng, Sun Chao, Miao Chengxia. TEMPO and its derivatives mediated reactions under transition-metal-free conditions[J]. Chinese Chemical Letters, ;2020, 31(1): 39-48. doi: 10.1016/j.cclet.2019.06.027 shu

TEMPO and its derivatives mediated reactions under transition-metal-free conditions




  • Author Bio: Hongfeng Zhuang was born in Shandong province in 1996, and entered College of Chemistry and Material Science, Shandong Agricultural University in 2015. At present, she is carrying out scientific research under the guidance of Prof. Chengxia Miao, developing the green catalytic oxidation



    Feng Han received his PhD in physical chemistry from Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences in 2012 under the guidance of Prof. Chungu Xia. And he worked in Lanzhou Institute of Chemical Physics until 2017. Then he moved to Shandong Agricultural University. At present, his primary research interest is homogeneous catalysis, especially designing and synthesizing novel functionalized ionic liquids for exploiting new reactions for building a series of C-X bonds

    Chengxia Miao obtained her PhD in organic chemistry from Nankai University in 2010 under the guidance of Prof. Liang-Nian He. Then she joined the group of Prof. Wei Sun in Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences. In 2017 she moved to her present position as professor in Shandong Agricultural University. Her current research interests focus on oxidation reactions catalyzed by organic small molecules or biomimetic catalysts
  • * Corresponding author.
    E-mail addresses: fenghan@sdau.edu.cn (F. Han) chxmiao@sdau.edu.cn (C. Miao).
  • Received Date: 18 April 2019
    Revised Date: 10 June 2019
    Accepted Date: 10 June 2019
    Available Online: 22 January 2020

Figures(30)

  • 2, 2, 6, 6-Tetramethyl-1-piperidinyl-N-oxyl (TEMPO) and its derivatives as stable radicals can participate in many reactions. During the process, TEMPO and its derivatives could act not only as the substrates to capture or initiate new radical intermediates to provide new compounds but also as organic catalysts or oxidants for transformations of alkenes, alcohols, aldehydes and so on to synthesize various high valueadded compounds. In this review, we would introduce recent advances of the transformations of different substrates mediated by TEMPO and its derivatives under transition-metal-free conditions.
  • 加载中
    1. [1]

      O.L. Lebedev, S.N. Kazarnovsky, Tr. Khim, Khim. Tekhnol. 3(1959) 649-653.

    2. [2]

      J.A. Cella, J.A. Kelly, E.F. Kenehan, J. Org. Chem. 40(1975) 1860-1862.  doi: 10.1021/jo00900a049

    3. [3]

      A. Rahimi, A. Azarpira, H. Kim, J. Ralph, S.S. Stahl, J. Am. Chem. Soc.135(2013) 6415-6418.  doi: 10.1021/ja401793n

    4. [4]

      (a) X.Q. Hu, X. Qi, J.R. Chen, et al., Nat. Commun. 7 (2016) 11188;
      (b) C.F. Harris, C.S. Kuehner, J. Bacsa, J.D. Soper, Angew. Chem. Int. Ed. 57 (2018) 1311-1315.

    5. [5]

      R. Shinoda, T. Saito, Y. Okita, A. Isogai, Biomacromolecules13(2012) 842-849.  doi: 10.1021/bm2017542

    6. [6]

      A. Badalyan, S.S. Stahl, Nature 535(2016) 406-410.  doi: 10.1038/nature18008

    7. [7]

      (a) J.M. Hoover, B.L. Ryland, S.S. Stahl, J. Am. Chem. Soc. 135 (2013) 2357-2367;
      (b) Y. Jing, J. Jiang, B. Yan, et al., Adv. Synth. Catal. 353 (2011) 1146-1152.

    8. [8]

      B.L. Ryland, S.S. Stahl, Angew. Chem. Int. Ed. 53(2014) 8824-8838.  doi: 10.1002/anie.201403110

    9. [9]

      K. Mitsudo, T. Shiraga, H. Tanaka, Tetrahedron Lett. 49(2008) 6593-6595.  doi: 10.1016/j.tetlet.2008.09.022

    10. [10]

      S. Maity, S. Manna, S. Rana, et al., J. Am. Chem. Soc. 135(2013) 3355-3358.  doi: 10.1021/ja311942e

    11. [11]

      (a) M.C. Baldovi, N. Mohtat, J.C. Scaiano, Macromolecules 29 (1996) 5497-5499;
      (b) L. Tebben, A. Studer, Angew. Chem. Int. Ed. 50 (2011) 5034-5068.

    12. [12]

      (a) R.C. Larock, Pure Appl. Chem. 71 (1999) 1435-1442;
      (b) C.M. Che, J.S. Huang, Coord. Chem. Rev. 231 (2002) 151-164;
      (c) S. Tang, K. Liu, C. Liu, A. Lei, Chem. Soc. Rev. 44 (2015) 1070-1082;
      (d) G. Yin, X. Mu, G. Liu, Acc. Chem. Res. 49 (2016) 2413-2423.

    13. [13]

      M.F. Sloan, A.S. Matlack, D.S. Breslow, J. Am. Chem. Soc. 85(1963) 4014-4018.  doi: 10.1021/ja00907a023

    14. [14]

      Y. Zhu, Q. Wang, R.G. Cornwall, Y. Shi, Chem. Rev. 114(2014) 8199-8256.  doi: 10.1021/cr500064w

    15. [15]

      C.J.R. Bataille, T.J. Donohoe, Chem. Soc. Rev. 40(2011) 114-128.  doi: 10.1039/B923880H

    16. [16]

      C.X. Miao, B. Yu, L.N. He, Green Chem. 13(2011) 541-544.  doi: 10.1039/c0gc00676a

    17. [17]

      M.J.S. Dewar, R.C. Fahey, J. Am. Chem. Soc. 85(1963) 3645-3648.  doi: 10.1021/ja00905a025

    18. [18]

      F. Minisci, Acc. Chem. Res. 8(1975) 165-171.  doi: 10.1021/ar50089a004

    19. [19]

      X. Wang, A. Studer, Acc. Chem. Res. 50(2017) 1712-1724.  doi: 10.1021/acs.accounts.7b00148

    20. [20]

      B. Zhang, A. Studer, Org. Lett. 15(2013) 4548-4551.  doi: 10.1021/ol402106x

    21. [21]

      M. Hartmann, Y. Li, C. Mück-Lichtenfeld, A. Studer, Chem. -Eur. J. 22(2016) 3485-3490.  doi: 10.1002/chem.201504852

    22. [22]

      M. Hartmann, Y. Li, A. Studer, J. Am. Chem. Soc. 134(2012) 16516-16519.  doi: 10.1021/ja307638u

    23. [23]

      Y. Li, M. Hartmann, C.G. Daniliuc, A. Studer, Chem. Commun. 51(2015) 5706-5709.  doi: 10.1039/C5CC00591D

    24. [24]

      Y. Li, A. Studer, Angew. Chem. Int. Ed. 51(2012) 8221-8224.  doi: 10.1002/anie.201202623

    25. [25]

      I. Colomer, R.C. Barcelos, K.E. Christensen, T.J. Donohoe, Org. Lett. 18(2016) 5880-5883.  doi: 10.1021/acs.orglett.6b02959

    26. [26]

      J.L. Liu, S.W. Wu, Q.Y. Wu, F. Liu, J. Org. Chem. 83(2018) 8183-8192.  doi: 10.1021/acs.joc.8b00954

    27. [27]

      J.E. Nutting, M. Rafiee, S.S. Stahl, Chem. Rev. 118(2018) 4834-4885.  doi: 10.1021/acs.chemrev.7b00763

    28. [28]

      J.C. Siu, G.S. Sauer, A. Saha, et al., J. Am. Chem. Soc. 140(2018) 12511-12520.  doi: 10.1021/jacs.8b06744

    29. [29]

      J.C. Siu, J.B. Parry, S. Lin, J. Am. Chem. Soc. 141(2019) 2825-2831.  doi: 10.1021/jacs.8b13192

    30. [30]

      C. Wan, R.J. Song, J.H. Li, Org. Lett. 21(2019) 2800-2803.  doi: 10.1021/acs.orglett.9b00771

    31. [31]

      X.Q. Hu, J. Chen, J.R. Chen, D.M. Yan, W.J. Xiao, Chem. Eur. J. 22(2016) 14141-14146.  doi: 10.1002/chem.201602597

    32. [32]

      D. Gangaprasad, J.P. Raj, T. Kiranmye, K. Karthikeyan, J. Elangovan, Eur. J. Org. Chem. 2016(2016) 5642-5646.  doi: 10.1002/ejoc.201601121

    33. [33]

      (a) Y. Liu, H. Hu, J. Zhou, et al., Org. Biomol. Chem. 15 (2017) 5016-5024;
      (b) F. Shi, Y. Zhang, Z. Lu, et al., Synthesis 48 (2016) 413-420.

    34. [34]

      T. Wang, N. Jiao, J. Am. Chem. Soc. 135(2013) 11692-11695.  doi: 10.1021/ja403824y

    35. [35]

      (a) S. Manna, S. Jana, T. Saboo, A. Maji, D. Maiti, Chem. Commun. 49 (2013) 5286-5288;
      (b) S. Maity, T. Naveen, U. Sharma, D. Maiti, Org. Lett. 15 (2013) 3384-3387.

    36. [36]

      G.K. Kole, G.K. Tan, J.J. Vittal, Org. Lett. 12(2010) 128-131.  doi: 10.1021/ol9025233

    37. [37]

      (a) T. Mitsudo, H. Naruse, T. Kondo, Y. Ozaki, Y. Watanabe, Angew. Chem. Int. Ed. 33 (1994) 580-581;
      (b) N.N. Noucti, E.J. Alexanian, Angew. Chem. Int. Ed. 54 (2015) 5447-5450.

    38. [38]

      M.L. Conner, Y. Xu, M.K. Brown, J. Am. Chem. Soc. 137(2015) 3482-3485.  doi: 10.1021/jacs.5b00563

    39. [39]

      S. Kyokane, Y. Tanaka, Y. Sei, M. Shiotsuki, Tetrahedron Lett. 58(2017) 4755-4758.  doi: 10.1016/j.tetlet.2017.10.072

    40. [40]

      (a) R. Liu, X. Liang, C. Dong, X. Hu, J. Am. Chem. Soc. 126 (2004) 4112-4113;
      (b) X. Wang, R. Liu, Y. Jin, X. Liang, Chem. -Eur. J. 14 (2008) 2679-2685;
      (c) Y. Xie, W. Mo, D. Xu, et al., J. Org. Chem. 72 (2007) 4288-4291.

    41. [41]

      Y. Dong, X. Zhao, R. Liu, Chin. J. Chem. 33(2015) 1019-1023.  doi: 10.1002/cjoc.201500357

    42. [42]

      M.S. Laeini, A. Shaabani, ChemistrySelect 2(2017) 9084-9087.  doi: 10.1002/slct.201701428

    43. [43]

      (a) G.E. Dwulet, D.L. Gin, Chem. Commun. 54 (2018) 12053-12056;
      (b) M. Liu, B. Zhou, L. Zhou, et al., J. Mater. Chem. A 6 (2018) 9860-9865;
      (c) B. Karimi, S. Vahdati, H. Vali, RSC Adv. 6 (2016) 63717-63723;
      (d) H. Zhang, L. Fu, H. Zhong, Chin. J. Catal. 34 (2013) 1848-1854.

    44. [44]

      M. Rafiee, K.C. Miles, S.S. Stahl, J. Am. Chem. Soc. 137(2015) 14751-14757.  doi: 10.1021/jacs.5b09672

    45. [45]

      A. Das, S.S. Stahl, Angew. Chem. Int. Ed. 56(2017) 8892-8897.  doi: 10.1002/anie.201704921

    46. [46]

      H. Shiigi, H. Mori, T. Tanaka, Y. Demizu, O. Onomura, Tetrahedron Lett. 49(2008) 5247-5251.  doi: 10.1016/j.tetlet.2008.06.112

    47. [47]

      M. Tomizawa, M. Shibuya, Y. Iwabuchi, Org. Lett. 11(2009) 1829-1831.  doi: 10.1021/ol900441f

    48. [48]

      M. Shibuya, M. Tomizawa, I. Suzuki, Y. Iwabuchi, J. Am. Chem. Soc.128(2006) 8412-8413.  doi: 10.1021/ja0620336

    49. [49]

      M. Shibuya, T. Shibuta, H. Fukuda, Y. Iwabuchi, Org. Lett.14(2012) 5010-5013.  doi: 10.1021/ol3021435

    50. [50]

      S. Zhang, C. Miao, C. Xia, W. Sun, ChemCatChem 7(2015) 1865-1870.  doi: 10.1002/cctc.201500214

    51. [51]

      Y. Jing, C.G. Daniliuc, A. Studer, Org. Lett. 16(2014) 4932-4935.  doi: 10.1021/ol5024568

    52. [52]

      R. Ray, R.D. Jana, M. Bhadra, D. Maiti, G.K. Lahiri, Chem. -Eur. J. 20(2014) 15618-15624.  doi: 10.1002/chem.201403786

    53. [53]

      (a) M. Ji, X. Wang, Y.N. Lim, Y.W. Kang, H.Y. Jang, Eur. J. Org. Chem. 2013 (2013) 7881-7885;
      (b) Y.W. Kang, H.Y. Jang, RSC Adv. 4 (2014) 44486-44490.

    54. [54]

      J.M. Vatèle, Synlett 26(2015) 2280-2284.  doi: 10.1055/s-0034-1381056

    55. [55]

      (a) L.M. Dornan, Q. Cao, J.C.A. Flanagan, et al., Chem. Commun. 49 (2013) 6030-6032;
      (b) S.U. Dighe, D. Chowdhury, S. Batra, Adv. Synth. Catal. 356 (2014) 3892-3896.

    56. [56]

      J.M. Vatèle, Synlett 25(2014) 1275-1278.  doi: 10.1055/s-0033-1341124

    57. [57]

      T. Chinnusamy, Catal. Commun. 119(2019) 51-56.  doi: 10.1016/j.catcom.2018.08.021

    58. [58]

      (a) J.J. Mousseau, A.B. Charette, Acc. Chem. Res. 46 (2013) 412-424;
      (b) C. Zhang, C. Tang, N. Jiao, Chem. Soc. Rev. 41 (2012) 3464-3484.

    59. [59]

      (a) Y. Bansal, O. Silakari, Bioorg. Med. Chem. 20 (2012) 6208-6236;
      (b) J.P. Michael, Nat. Prod. Rep. 25 (2008) 166-187.

    60. [60]

      D. Xue, Y.Q. Long, J. Org. Chem. 79(2014) 4727-4734.  doi: 10.1021/jo5005179

    61. [61]

      J. Hu, H. Xu, P. Nie, et al., Chem. -Eur. J. 20(2014) 3932-3938.  doi: 10.1002/chem.201304923

    62. [62]

      J.P. Lin, F.H. Zhang, Y.Q. Long, Org. Lett. 16(2014) 2822-2825.  doi: 10.1021/ol500864r

    63. [63]

      B. Han, X.L. Yang, R. Fang, et al., Angew. Chem. Int. Ed. 51(2012) 8816-8820.  doi: 10.1002/anie.201203799

    64. [64]

      X.Y. Duan, X.L. Yang, R. Fang, et al., J. Org. Chem. 78(2013) 10692-10704.  doi: 10.1021/jo4016908

    65. [65]

      X.Y. Duan, N.N. Zhou, R. Fang, et al., Angew. Chem. Int. Ed. 53(2014) 3158-3162.  doi: 10.1002/anie.201309918

    66. [66]

      F. Chen, X.L. Yang, Z.W. Wu, B. Han, J. Org. Chem. 81(2016) 3042-3050.  doi: 10.1021/acs.joc.6b00180

    67. [67]

      X. Zhu, Y.F. Wang, W. Ren, F.L. Zhang, S. Chiba, Org. Lett.15(2013) 3214-3217.  doi: 10.1021/ol4014969

    68. [68]

      X. Zhu, S. Chiba, Org. Biomol. Chem. 12(2014) 4567-4570.  doi: 10.1039/C4OB00839A

    69. [69]

      J.L. Zhan, M.W. Wu, D. Wei, et al., ACS Catal. 9(2019) 4179-4188.  doi: 10.1021/acscatal.9b00832

    70. [70]

      K.M. Lambert, J.M. Bobbitt, S.A. Eldirany, K.B. Wiberg, W.F. Bailey, Org. Lett.16(2014) 6484-6487.  doi: 10.1021/ol503345h

    71. [71]

      K.M. Lambert, J.M. Bobbitt, S.A. Eldirany, et al., Chem. -Eur. J. 22(2016) 5156-5159.  doi: 10.1002/chem.201600549

    72. [72]

      P. Galletti, G. Martelli, G. Prandini, C. Colucci, D. Giacomini, RSC Adv. 8(2018) 9723-9730.  doi: 10.1039/C8RA01365A

    73. [73]

      A.H. Bansode, G. Suryavanshi, RSC Adv. 8(2018) 32055-32062.  doi: 10.1039/C8RA07451H

    74. [74]

      Y. Chen, L. Qian, W. Zhang, B. Han, Angew. Chem. Int. Ed. 47(2008) 9330-9333.  doi: 10.1002/anie.200803381

    75. [75]

      H. Huo, X.Y. Tang, Y. Gong, Synthesis 50(2018) 2727-2740.  doi: 10.1055/s-0037-1610131

    76. [76]

      B. Han, C. Wang, R.F. Han, et al., Chem. Commun. 47(2011) 7818-7820.  doi: 10.1039/c1cc12308d

    77. [77]

      T. Kano, F. Shirozu, K. Maruoka, J. Am. Chem. Soc. 135(2013) 18036-18039.  doi: 10.1021/ja4099627

    78. [78]

      X. Zhao, T.X. Liu, N. Ma, G. Zhang, J. Org. Chem. 82(2017) 6125-6132.  doi: 10.1021/acs.joc.7b00686

    79. [79]

      S.E. Baillie, V.L. Blair, T.D. Bradley, et al., Chem. Sci. 4(2013) 1895-1905.  doi: 10.1039/c3sc22326d

    80. [80]

      X.L. Yang, X.X. Peng, F. Chen, B. Han, Org. Lett. 18(2016) 2070-2073.  doi: 10.1021/acs.orglett.6b00702

    81. [81]

      W.B. Qin, J.Y. Zhu, Y.B. Kong, et al., Org. Biomol. Chem.12(2014) 4252-4259.  doi: 10.1039/C4OB00356J

    82. [82]

      (a) B.M. Trost, E. Keinan, J. Org. Chem. 45 (1980) 2741-2746;
      (b) R. Shi, L. Lu, H. Zhang, et al., Angew. Chem. Int. Ed. 52 (2013) 10582-10585.

    83. [83]

      X. Jia, P. Li, Y. Shao, et al., Green Chem. 19(2017) 5568-5574.  doi: 10.1039/C7GC02775C

    84. [84]

      H. Liu, Y. Fang, S.Y. Wang, S.J. Ji, Org. Lett. 20(2018) 930-933.  doi: 10.1021/acs.orglett.7b03783

    85. [85]

      X.Y. Qian, S.Q. Li, J. Song, H.C. Xu, ACS Catal. 7(2017) 2730-2734.  doi: 10.1021/acscatal.7b00426

    86. [86]

      B. Dong, S. Lu, J. Jiang, et al., J. Chem. Technol. Biotechnol. 87(2012) 341-345.  doi: 10.1002/jctb.2719

    87. [87]

      L. Yang, S. Li, Y. Dou, et al., Asian J. Org. Chem. 6(2017) 265-268.  doi: 10.1002/ajoc.201600588

    88. [88]

      (a) S. Manna, S. Jana, T. Saboo, A. Majia, D. Maiti, Chem. Commun. 49 (2013) 5286-5288;
      (b) A. Zhao, Q. Jiang, J. Jia, et al., Tetrahedron Lett. 57 (2016) 80-84.

    89. [89]

      U. Dutta, S. Maity, R. Kancherla, D. Maiti, Org. Lett. 16(2014) 6302-6305.  doi: 10.1021/ol503025n

    90. [90]

      X.H. Yang, X.H. Ouyang, W.T. Wei, R.J. Song, J.H. Li, Adv. Synth. Catal. 357(2015) 1161-1166.  doi: 10.1002/adsc.201400895

    91. [91]

      X.H. Hao, P. Gao, X.R. Song, et al., Chem. Commun. 51(2015) 6839-6842.  doi: 10.1039/C5CC00872G

    92. [92]

      B. Gou, D. Li, C. Yang, et al., J. Photochem. Photobiol. A 233(2012) 46-49.  doi: 10.1016/j.jphotochem.2012.02.008

    93. [93]

      Z. Shen, M. Chen, T. Fang, et al., Tetrahedron Lett. 56(2015) 2768-2772.  doi: 10.1016/j.tetlet.2015.04.033

    94. [94]

      A. Chennaiah, A.K. Verma, Y.D. Vankar, J. Org. Chem. 83(2018) 10535-10540.  doi: 10.1021/acs.joc.8b01191

    95. [95]

      X. Tian, Y.L. Ren, F. Ren, et al., Synlett 29(2018) 2444-2448.  doi: 10.1055/s-0037-1611062

    96. [96]

      J.H. Noh, J. Kim, J. Org. Chem. 80(2015) 11624-11628.  doi: 10.1021/acs.joc.5b02333

    97. [97]

      C. Fang, M. Li, X. Hu, et al., Adv. Synth. Catal. 358(2016) 1157-1163.  doi: 10.1002/adsc.201501130

    98. [98]

      S. Chiba, H. Chen, Org. Biomol. Chem. 12(2014) 4051-4060.  doi: 10.1039/C4OB00469H

    99. [99]

      P. Novák, A. Correa, J. Gallardo-Donaire, R. Martin, Angew. Chem. Int. Ed. 50(2011) 12236-12239.  doi: 10.1002/anie.201105894

    100. [100]

      G. Zhang, Y. Zhang, R. Wang, Angew. Chem. Int. Ed. 50(2011) 10429-10432.  doi: 10.1002/anie.201105123

    101. [101]

      U. Osorio-Nieto, D. Chamorro-Arenas, L. Quintero, H. Höpfl, F. Sartillo-Piscil, J. Org. Chem. 81(2016) 8625-8632.  doi: 10.1021/acs.joc.6b01566

    102. [102]

      D. Chamorro-Arenas, U. Osorio-Nieto, L. Quintero, L. Hernández-García, F. Sartillo-Piscil, J. Org. Chem. 83(2018) 15333-15346.  doi: 10.1021/acs.joc.8b02564

    103. [103]

      Z.L. Wang, X.L. An, L.S. Ge, et al., Tetrahedron 70(2014) 3788-3792.  doi: 10.1016/j.tet.2014.04.021

    104. [104]

      C. Li, C.C. Zeng, L.M. Hu, et al., Electrochim. Acta 114(2013) 560-566.  doi: 10.1016/j.electacta.2013.10.093

    105. [105]

      Z. Zhang, Y. Gao, Y. Liu, et al., Org. Lett. 17(2015) 5492-5495.  doi: 10.1021/acs.orglett.5b02877

    106. [106]

      B. Zhang, Y. Cui, N. Jiao, Chem. Commun. 48(2012) 4498-4500.  doi: 10.1039/c2cc30684k

    107. [107]

      W. Hu, J.P. Lin, L.R. Song, Y.Q. Long, Org. Lett. 17(2015) 1268-1271.  doi: 10.1021/acs.orglett.5b00248

    108. [108]

      J. Peng, G. Huang, H.J. Wang, et al., J. Org. Chem. 83(2018) 85-95.  doi: 10.1021/acs.joc.7b02378

    109. [109]

      C. Ganachaud, V. Garfagnoli, T. Tron, G. Iacazio, Tetrahedron Lett. 49(2008) 2476-2478.  doi: 10.1016/j.tetlet.2008.02.021

    110. [110]

      W.B. Qin, Q. Chang, Y.H. Bao, et al., Org. Biomol. Chem. 10(2012) 8814-8821.  doi: 10.1039/c2ob26390d

  • 加载中
    1. [1]

      Yang XiaojiangMao JinchengZhang HengZhang YangMao Jinhua . Copper-Catalyzed Aerobic Oxidation Reaction of Benzyl Alcohol in Water under Base-Free Condition. Chinese Journal of Organic Chemistry, 2018, 38(10): 2780-2783. doi: 10.6023/cjoc201802018

    2. [2]

      Arash Ghorbani-Choghamarani Mina Abbasi . Poly(4-vinylpyridinium tribromide) as metal-free,green and recoverable oxidizing polymer for the chemoselective oxidation of sulfides into sulfoxides. Chinese Chemical Letters, 2011, 22(1): 114-118. doi: 10.1016/j.cclet.2010.09.011

    3. [3]

      Yang Xiao Xiao Yan Zhang Qin Bo Wang Ze Tan Can Cheng Guo Wei Deng Zhi Gang Liu He Fei Zhang . The preparation of terephthalic acid by solvent-free oxidation of p-xylene with air over T(pCl)PPMnCl and Co(OAc)2. Chinese Chemical Letters, 2011, 22(2): 135-138. doi: 10.1016/j.cclet.2010.09.027

    4. [4]

      Xu-Wei WuBin-Dong Li . Preparation of high purity 1,2-diols by catalytic oxidation of linear terminal alkenes with H2O2 in the presence of carboxylic acids under solvent-free conditions. Chinese Chemical Letters, 2014, 25(3): 459-462. doi: 10.1016/j.cclet.2013.11.049

    5. [5]

      Xiao-Jun DaiXiao-Liang XuDong-Ping ChengXiao-Nian Li . Visible-light photoredox-mediated oxidation of N-methyl tertiaryamines under catalyst free conditions:Direct synthesis of methylene-bridged bis-1,3-dicarbonyl compounds. Chinese Chemical Letters, 2014, 25(4): 545-548. doi: 10.1016/j.cclet.2014.01.021

    6. [6]

      Xiao Quan Lu De Fang Dong Xiu Hui Liu Dong Na Yao Wen Ting Wang Yu Mei Xu . Investigation of the oxidation of hydroquinone at the liquid/liquid interface. Chinese Chemical Letters, 2010, 21(2): 225-228. doi: 10.1016/j.cclet.2009.09.004

    7. [7]

      Warangkana Kanjina Wimonrat Trakarnpruk . Mixed metal oxide catalysts for the selective oxidation of ethylbenzene to acetophenone. Chinese Chemical Letters, 2011, 22(4): 401-404. doi: 10.1016/j.cclet.2010.10.035

    8. [8]

      Xiu Hui Liu Cun Wu Dong Kai Zhang Fu Peng Zhi Zhen Ding Xiao Quan Lu . Effect of SDBS on interfacial electron transfer at the liquid/liquid interface by thin layer metho. Chinese Chemical Letters, 2009, 20(9): 1115-1118. doi: 10.1016/j.cclet.2009.04.035

    9. [9]

      Yong Hui WANG Man Zhou ZHU Tao LIU Qing Xiang GUO . The Electron Transfer Reaction between p-Nitrobenzoates and β-N, N-Dimethylaminonaphthalene. Chinese Chemical Letters, 2003, 14(2): 159-162.

    10. [10]

      Yu Mei XING Zheng Yu ZHOU Ben Ni DU . DFT Calculations for Electron Transfer Bond-breaking Reaction of CH3-X. Chinese Chemical Letters, 2001, 12(4): 347-350.

    11. [11]

      Hua JIANG Hui Jun XU . Synthesis and Cation-Mediated Electron Transfer in Fluorescence Quenching of Donor-Acceptor Podands. Chinese Chemical Letters, 2000, 11(9): 767-770.

    12. [12]

      Bing Xia Qiang Miao Jie Chao Shou Jun Xiao Hai Tao Wang Zhong Dang Xiao . Charge transfer on porous silicon membranes studied by current-sensing atomic force microscopy. Chinese Chemical Letters, 2008, 19(2): 199-202. doi: 10.1016/j.cclet.2007.12.003

    13. [13]

      Bao Kun ZHU Hong Bin ZHANG Yu Shun ZHANG Hui Min ZHONG Jian Ping LIU . Oxidation of Hecogenin and Diosgenin Derivatives with Dimethyldioxirane. Chinese Chemical Letters, 2005, 16(2): 143-146.

    14. [14]

      Chuan Zhi XU Lin CHEN Zhen LI Wei SUN Chun Gu XIA . A Mild and Efficient Oxidation of Alcohols in Water. Chinese Chemical Letters, 2004, 15(10): 1149-1152.

    15. [15]

      Dong Po Shi Hong Bing Ji . β-Cyclodextrin promoted oxidation of aldehydes to carboxylic acids in water. Chinese Chemical Letters, 2009, 20(2): 139-142. doi: 10.1016/j.cclet.2008.10.037

    16. [16]

      Hui Ming Jin Lin Nan Zhang . High temperature oxidation of chromium with nanometric ceria sol-gel coating. Chinese Chemical Letters, 2008, 19(12): 1504-1508. doi: 10.1016/j.cclet.2008.09.038

    17. [17]

      Xiao Gang Li Jing Wang Ren He . Selective oxidation of ethylbenzene catalyzed by fluorinated metalloporphyrins with molecular oxygen. Chinese Chemical Letters, 2007, 18(9): 1053-1056. doi: 10.1016/j.cclet.2007.06.019

    18. [18]

      Jun LIU Rui ZHANG Liang GAO Tao JIANG Zhi Min LIU Jun HE Bu Xing HAN Guan Ying YANG . The Oxidation of Cyclohexene with Polymer Supported Co(II) in Supercritical Carbon Dioxide. Chinese Chemical Letters, 2002, 13(12): 1162-1163.

    19. [19]

      Nor Aqilah Mohd FadzilMohd Hasbi Ab. RahimGaanty Pragas Maniam . A brief review of para-xylene oxidation to terephthalic acid as a model of primary C-H bond activation. Chinese Journal of Catalysis, 2014, 35(10): 1641-1652. doi: 10.1016/S1872-2067(14)60193-5

    20. [20]

      Ali Reza Pourali Mehrosadat Tabaean S. Mohamad Reza Nazifi . A novel and selective oxidation of benzylic alcohols with polymer-supported periodic acid under mild aprotic conditions. Chinese Chemical Letters, 2012, 23(1): 21-24. doi: 10.1016/j.cclet.2011.07.022

Metrics
  • PDF Downloads(9)
  • Abstract views(63)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return