Citation: Zhang Min, Wang Jun-Xin, Chang Shun-Qin, Liu Xiong-Li, Zuo Xiong, Zhou Ying. Highly efficient enantioselective synthesis of bispiro [benzofuran-oxindole/benzofuran-chromanone]s through organocatalytic inter-/intramolecular Michael cycloaddition[J]. Chinese Chemical Letters, ;2020, 31(2): 381-385. doi: 10.1016/j.cclet.2019.06.015 shu

Highly efficient enantioselective synthesis of bispiro [benzofuran-oxindole/benzofuran-chromanone]s through organocatalytic inter-/intramolecular Michael cycloaddition

    * Corresponding author.
    E-mail address: xlliu1@gzu.edu.cn (X.-L. Liu).
  • Received Date: 9 May 2019
    Revised Date: 30 May 2019
    Accepted Date: 6 June 2019
    Available Online: 7 June 2019

Figures(7)

  • A quinine-derived thiourea-catalyzed inter-/intramolecular Michael cycloaddition of chromoneoxindole/benzofuranone synthons with 3-substituted methylenebenzofuranones has been established, which constructed enantiomerically pure bispiro[benzofuran-oxindole/benzofuran-chromanone]s bearing five consecutive stereocenters including two spiro quaternary carton centers in good yields (up to 93%) with high diastereoselectivities (up to >20:1 dr) and good enantioselectivities (up to >99% ee). Moreover, this is the first example of bifunctional chromone-benzofuranone synthon directed organocatalytic tandem reaction, and also the first example of the bispiro[benzofuran-oxindole] and bispirobenzofuranone, potentially useful in medicinal chemistry.
  • 加载中
    1. [1]

      (a) C. Viegas-Junior, A. Danuello, V.D.S. Bolzani, E.J. Barreiro, C.A.M. Fraga, Curr. Med. Chem. 14 (2007) 1829-1852;
      (b) S. Fortin, G. Bérubé, Expert Opin. Drug Discov. 8 (2013) 1029-1047;
      (c) E.J. Sorensen, H.M.L. Davies, Chem. Soc. Rev. 38 (2009) 2969-2969;
      (d) C. Ma, F. Jiang, F.T. Sheng, et al., Angew. Chem. Int. Ed. 58 (2019) 3014-3020;
      (e) X.P. Zeng, J. Zhou, J. Am. Chem. Soc. 138 (2016) 8730-8733.

    2. [2]

      (a) D.S. Tan, Nat. Chem. Biol. 1 (2005) 74-84;
      (b) M.D. Burke, S.L. Schreiber, Angew. Chem. Int. Ed. 43 (2004) 46-58;
      (c) C. Ma, J.Y. Zhou, Y.Z. Zhang, et al., Chem. -Asian J. 13 (2018) 2549-2558;
      (d) M. Sun, C. Ma, S.J. Zhou, et al., Angew. Chem. Int. Ed. 58 (2019) 8703-8708.

    3. [3]

      (a) A.A. Hussein, J.J.M. Meyer, M.L. Jimeno, B. Rodríguez, J. Nat. Prod. 70 (2007) 293-295;
      (b) H.M. Ge, C.H. Zhu, D.H. Shi, et al., Chem. -Eur. J. 14 (2008) 376-381;
      (c) L. Pérez-Fons, M.T. Garzón, V. Micol, J. Agric. Food Chem. 58 (2010) 161-171;
      (d) M.W. Pertino, C. Theoduloz, J.A. Rodríguez, V. Lazo, J. Nat. Prod. 73 (2010) 639-643;
      (e) K.C. Nicolaou, T.R. Wu, Q. Kang, D.Y.K. Chen, Angew. Chem. Int. Ed. 48 (2009) 3440-3443;
      (f) K.C. Nicolaou, Q. Kang, T.R. Wu, C.S. Lim, D.Y.K. Chen, J. Am. Chem. Soc. 132 (2010) 7540-7548;
      (g) B.Sontag, M.Ruth, P.Spiteller, etal., Eur.J.Org.Chem.2006 (2006)1023-1033;
      (h) N. Nakatani, R. Inatani, Agric. Biol. Chem. 47 (1983) 353-358.

    4. [4]

      (a) X. Li, C. Yang, J.L. Jin, X.S. Xue, J.P. Cheng, Chem. -Asian J. 8 (2013) 997-1003;
      (b) C. Cassani, X. Tian, E.C. Escudero-Adán, P. Melchiorre, Chem. Commun. 47 (2011) 233-235.

    5. [5]

      (a) X. Li, M.H. Lin, Y. Han, F. Wang, J.P. Cheng, Org. Lett. 16 (2014) 114-117;
      (b) K. Albertshofer, B. Tan, C.F. Barbas III, Org. Lett. 15 (2013) 2958-2961;
      (c) X. Companyó, A. Zea, A.N.R. Alba, et al., Chem. Commun. 46 (2010) 6953-6955.

    6. [6]

      (a) D. Cheng, Y. Ishihara, B. Tan, C.F. Barbas III, ACS Catal. 4 (2014) 743-762;
      (b) G.S. Singh, Z.Y. Desta, Chem. Rev. 112 (2012) 6104-6155;
      (c) L. Hong, R. Wang, Adv. Synth. Catal. 355 (2013) 1023-1053;
      (d) W.Y. Han, J.Q. Zhao, J. Zuo, et al., Adv. Synth. Catal. 357 (2015) 3007-3031;
      (e) J.S. Yu, F. Zhou, Y.L. Liu, J. Zhou, Synlett 26 (2015) 2491-2504;
      (f) F. Zhou, Y.L. Liu, J. Zhou, Adv. Synth. Catal. 352 (2010) 1381-1407;
      (g) L. Hong, R. Wang, Adv. Synth. Catal. 355 (2013) 1023-1053;
      (h) G. Mei, F. Shi, Chem. Commun. 54 (2018) 6607-6621;
      (i) Z.Y. Cao, F. Zhou, J. Zhou, Acc. Chem. Res. 51 (2018) 1443-1454;
      (j) Y. Zhu, J. Zhou, S. Jin, et al., Chem. Commun. 53 (2017) 11201-11204;
      (k) J. Guo, X. Bai, Q. Wang, Z. Bu, J. Org. Chem. 83 (2018) 3679-3687;
      (l) Y. Chen, B.D. Cui, Y. Wang, et al., J. Org. Chem. 83 (2018) 10465-10475;
      (m) H. Lu, X. Li, F. Shi, S.J. Tu, Chem. -Eur. J. 20 (2014) 11382-11389;
      (n) G.J. Mei, D. Li, G.X. Zhou, et al., Chem. Commun. 53 (2017) 10030-10033;
      (o) Y. Zhu, J. Zhou, S. Jin, et al., Chem. Commun. 53 (2017) 11201-11204.

    7. [7]

      (a) F. Wong, H. Watson, A. Gerbes, et al., Gut 61 (2012) 108;
      (b) P. Ginès, F. Wong, H. Watson, et al., Hepatology 48 (2008) 204-213;
      (c) G.C. Bignan, K. Battista, P.J. Connolly, et al., Bioorg. Med. Chem. Lett. 15 (2005) 5022-5026.

    8. [8]

      (a) Y.K. Liu, M. Nappi, E. Arceo, S. Vera, P. Melchiorre, J. Am. Chem. Soc. 133 (2011) 15212-15218;
      (b) I. Chatterjee, D. Bastida, P. Melchiorre, Adv. Synth. Catal. 355 (2013) 3124-3130;
      (c) B. Zhou, Y. Yang, J. Shi, Z. Luo, Y. Li, J. Org. Chem. 78 (2013) 2897-2907;
      (d) K. Jiang, Z.J. Jia, S. Chen, L. Wu, Y.C. Chen, Chem. -Eur. J. 16 (2010) 2852-2856.

    9. [9]

      (a) J. Chen, J.M. Chen, F. Lang, et al., J. Am. Chem. Soc. 132 (2010) 4552-4553;
      (b) M.K. Brown, S.J. Degrado, A.H. Hoveyda, Angew. Chem. Int. Ed. 44 (2005) 5306-5310;
      (c) D. Xiong, W. Zhou, Z. Lu, S. Zeng, J. Wang, Chem. Commun. 53 (2017) 6844-6847;
      (d) L. Meng, M.Y. Jin, J. Wang, Org. Lett. 18 (2016) 4986-4989;
      (e) B.M. Trost, E. Gnanamani, C.A. Kalnmals, C. Hung, J.S. Tracy, J. Am. Chem. Soc. 141 (2019) 1489-1493.

    10. [10]

      (a) G. Wen, Y. Su, G. Zhang, et al., Org. Lett. 18 (2016) 3980-3983;
      (b) A. Khilevich, A. Mar, M.T. Flavin, et al., Tetrahedron Asymmetry 7 (1996) 3315-3326;
      (c) E. Sekino, T. Kumamoto, T. Tanaka, T. Ikeda, T. Ishikawa, J. Org. Chem. 69 (2004) 2760-2767;
      (d) J. Garcia, S. Barluenga, K. Beebe, L. Neckers, N. Winssinger, Chem. -Eur. J. 16 (2010) 9767-9771;
      (e) M.M. Biddle, M. Lin, K.A. Scheidt, J. Am. Chem. Soc. 129 (2007) 3830-3831;
      (f) R.L. Farmer, K.A. Scheidt, Chem. Sci. 4 (2013) 3304-3309;
      (g) B.R. McDonald, A.E. Nibbs, K.A. Scheidt, Org. Lett. 17 (2015) 98-101.

    11. [11]

      (a) K.S. Masters, S. Bräse, Chem. Rev. 112 (2012) 3717-3776;
      (b) R.N. Kharwar, A. Mishra, S. Gond, K.A. Stierle, D. Stierle, Nat. Prod. Rep. 28 (2011) 1208-1228;
      (c) S. Sato, Y. Suga, T. Yoshimura, et al., Bioorg. Med. Chem. Lett. 9 (1999) 2653-2656;
      (d) S.H. Shim, J. Baltrusaitis, J.B. Gloer, D.T. Wicklow, J. Nat. Prod. 74 (2011) 395-401;
      (e) R. Goel, V. Sharma, A. Budhiraja, M.P.S. Ishar, Bioorg. Med. Chem. Lett. 22 (2012) 4665-4667;
      (f) F. Zhang, L. Li, S. Niu, et al., J. Nat. Prod. 75 (2012) 230-237;
      (g) P.S. Wang, P. Liu, Y.J. Zhai, et al., J. Am. Chem. Soc. 137 (2015) 12732-12735;
      (h) M.C. Brohmer, E. Bourcet, M. Nieger, S. Brase, Chem. -Eur. J. 17 (2011) 13706-13711;
      (i) K.C. Nicolaou, A. Li, Angew. Chem. Int. Ed. 47 (2008) 6579-6582;
      (j) J.L. Li, S.L. Zhou, P.Q. Chen, et al., Chem. Sci. 3 (2012) 1879-1882.

    12. [12]

      (a) Ł. Albrecht, F. CruzAcosta, A. Fraile, et al., Angew. Chem. Int. Ed. 51 (2012) 9088-9092;
      (b) A. Albrecht, J. Bojanowski, Adv. Synth. Catal. 359 (2017) 2907-2911;
      (c) A. Danda, N. Kesava-Reddy, C. Golz, C. Strohmann, K. Kumar, Org. Lett. 18 (2016) 2632-2635.

    13. [13]

      (a) X.L. Liu, G. Zhou, Y. Gong, et al., Org. Lett. 21 (2019) 2528-2531;
      (b) X.L. Liu, Y. Gong, S. Chen, et al., Org. Chem. Front. 6 (2019) 1603-1607.

  • 加载中
    1. [1]

      Tao ZhouJing ZhouYunyun LiuJie-Ping WanFen-Er Chen . Transition metal-free tunable synthesis of 3-(trifluoromethylthio) and 3-trifluoromethylsulfinyl chromones via domino C–H functionalization and chromone annulation of enaminones. Chinese Chemical Letters, 2024, 35(11): 109683-. doi: 10.1016/j.cclet.2024.109683

    2. [2]

      Kuan DengFei YangZhi-Qi ChengBi-Wen RenHua LiuJiao ChenMeng-Yao SheLe YuXiao-Gang LiuHai-Tao FengJian-Li Li . Construction of wavelength-tunable DSE quinoline salt derivatives by regulating the hybridization form of the nitrogen atom and intramolecular torsion angle. Chinese Chemical Letters, 2024, 35(10): 109464-. doi: 10.1016/j.cclet.2023.109464

    3. [3]

      Ruowen Liang Chao Zhang Guiyang Yan . Enhancing CO2 cycloaddition through ligand functionalization: A case study of UiO-66 metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(2): 100211-100211. doi: 10.1016/j.cjsc.2023.100211

    4. [4]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    5. [5]

      Gangsheng LiXiang YuanFu LiuZhihua LiuXujie WangYuanyuan LiuYanmin ChenTingting WangYanan YangPeicheng Zhang . Three-step synthesis of flavanostilbenes with a 2-cyclohepten-1-one core by Cu-mediated [5 + 2] cycloaddition/decarboxylation cascade. Chinese Chemical Letters, 2025, 36(2): 109880-. doi: 10.1016/j.cclet.2024.109880

    6. [6]

      Xiaohui FuYanping ZhangJuan LiaoZhen-Hua WangYong YouJian-Qiang ZhaoMingqiang ZhouWei-Cheng Yuan . Palladium-catalyzed enantioselective decarboxylation of vinyl cyclic carbamates: Generation of amide-based aza-1,3-dipoles and application to asymmetric 1,3-dipolar cycloaddition. Chinese Chemical Letters, 2024, 35(12): 109688-. doi: 10.1016/j.cclet.2024.109688

Metrics
  • PDF Downloads(7)
  • Abstract views(1068)
  • HTML views(89)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return