Citation: Xie Shiliang, Gao Xiaotong, Zhou Feng, Wu Haihong, Zhou Jian. Enantioselective carboxylative cyclization of propargylic alcohol with carbon dioxide under mild conditions[J]. Chinese Chemical Letters, ;2020, 31(2): 324-328. doi: 10.1016/j.cclet.2019.05.060 shu

Enantioselective carboxylative cyclization of propargylic alcohol with carbon dioxide under mild conditions

    * Corresponding authors at: Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, China.
    E-mail addresses: fzhou@chem.ecnu.edu.cn (F. Zhou), hhwu@chem.ecnu.edu.cn (H. Wu), jzhou@chem.ecnu.edu.cn (J. Zhou).
  • Received Date: 18 March 2019
    Revised Date: 22 May 2019
    Accepted Date: 29 May 2019
    Available Online: 1 June 2019

Figures(2)

  • An enantioselective carboxylative cyclization of propargylic alcohols and CO2 was realized under mild conditions, based on a kinetic resolution strategy, which enabled the synthesis of chiral cyclic carbonates and propargylic alcohols with promising yield and enantioselectivity simultaneously.
  • 加载中
    1. [1]

      (a) T. Sakakura, J.C. Choi, H. Yasuda, Chem. Rev. 107 (2007) 2365-2387;
      (b) D.M. D'Alessandro, B. Smit, J.R. Long, Angew. Chem. Int. Ed. 49 (2010) 6058-6082;
      (c) M. Cokoja, C. Bruckmeier, B. Rieger, W.A. Herrmann, F.E. Kühn, Angew. Chem. Int. Ed. 50 (2011) 8510-8537;
      (d) E.V. Kondratenko, G. Mul, J. Baltrusaitis, G.O. Larraźabalc, J. Pérez-Ramírez, Energy Environ. Sci. 6 (2013) 3112-3135;
      (e) M. Aresta, A. Dibenedetto, A. Angelini, Chem. Rev. 114 (2014) 1709-1742;
      (f) X.B. Lu, Carbon Dioxide and Organometallics, Springer, Switzerland, (2016);
      (g) A.W. Kleij, M. North, A. Urakawa, ChemSusChem 10 (2017) 1036-1038;
      (h) S.S. Yan, Q. Fu, L.L. Liao, et al., Coord. Chem. Rev. 374 (2018) 439-463;
      (i) S. Wang, C. Xi, Chem. Soc. Rev. 48 (2019) 382-404.

    2. [2]

      M. He, Y. Sun, B. Han, Angew. Chem. Int. Ed. 52 (2013) 9620-9633.  doi: 10.1002/anie.201209384

    3. [3]

      (a) Q. Liu, L. Wu, R. Jackstell, M. Beller, Nat. Commun. 6 (2015) 5933-5947;
      (b) C. Maeda, Y. Miyazaki, T. Ema, Catal. Sci. Technol. 4 (2014) 1482-1497;
      (c) G. Fiorani, W. Guo, A.W. Kleij, Green Chem. 17 (2015) 1375-1389;
      (d) M. Börjesson, T. Moragas, D. Gallego, R. Martin, ACS Catal. 6 (2016) 6739-6749;
      (e) S.N. Riduan, Y. Zhang, Dalton Trans. 39 (2010) 3347-3357;
      (f) W. Zhang, C. Guo, X. Lü, Chin. J. Catal. 37 (2016) 215-217;
      (g) Z. Zhang, T. Ju, J.H. Ye, D.G. Yu, Synlett 28 (2017) 741-750;
      (h) W. Zhang, N. Zhang, C. Guo, X. Lü, Chin. J. Org. Chem. 37 (2017) 1309-1321;
      (i) Y.Y. Gui, W.J. Zhou, J.H. Ye, D.G. Yu, ChemSusChem 10 (2017) 1337-1340;
      (j) Y. Cao, X. He, N. Wang, H.R. Li, L.N. He, Chin. J. Chem. 36 (2018) 644-659;
      (k) Z. Zhang, J.H. Ye, D.S. Wu, Y.Q. Zhou, D.G. Yu, Chem. -Asian J. 13 (2018) 2292-2306.

    4. [4]

      (a) J.W. Comerford, I.D.V. Ingram, M. North, X. Wu, Green Chem. 17 (2015) 1966-1987;
      (b) Q.W. Song, L.N. He, Adv. Synth. Catal. 358 (2016) 1251-1258;
      (c) B. Zou, Chin. J. Chem. 35 (2017) 541-550;
      (d) Y. Wu, Y. Zhao, R. Li, et al., ACS Catal. 7 (2017) 6251-6255;
      (e) H. Zhou, G.X. Wang, X.B. Lu, Asian J. Org. Chem. 6 (2017) 1264-1269;
      (f) S. Sun, B. Wang, N. Gu, J.T. Yu, J. Cheng, Org. Lett. 19 (2017) 1088-1091;
      (g) G. Shen, W.J. Zhou, X.B. Zhang, et al., Chem. Commun. 54 (2018) 5610-5613.

    5. [5]

      H. Zhang, H.B. Liu, J.M. Yue, Chem. Rev. 114 (2014) 883-898.  doi: 10.1021/cr300430e

    6. [6]

      (a) J. Vaitla, Y. Guttormsen, J.K. Mannisto, et al., ACS Catal. 7 (2017) 7231-7244;
      (b) N. Kielland, C.J. Whiteoak, A.W. Kleija, Adv. Synth. Catal. 355 (2013) 2115-2138;
      (c) X.B. Lu, B. Liang, Y.J. Zhang, et al., J. Am. Chem. Soc. 126 (2004) 3732-3733;
      (d) M. Takimoto, Y. Nakamura, K. Kimura, M. Mori, J. Am. Chem. Soc. 126 (2004) 5956-5957;
      (e) M. Zhang, X. Zhao, S. Zheng, Chem. Commun. 50 (2014) 4455-4458;
      (f) B.A. Vara, T.J. Struble, W. Wang, M.C. Dobish, J.N. Johnston, J. Am. Chem. Soc. 137 (2015) 7302-7305;
      (g) Y.Y. Gui, N. Hu, X.W. Chen, et al., J. Am. Chem. Soc. 139 (2017) 17011-17014.

    7. [7]

      (a) M. Yoshida, M. Fujita, T. Ishii, M. Ihara, J. Am. Chem. Soc. 125 (2003) 4874-4881;
      (b) S. Yoshida, K. Fukui, S. Kikuchi, T. Yamada, J. Am. Chem. Soc. 132 (2010) 4072-4073.

    8. [8]

      (a) J.M. Keith, J.F. Larrow, E.N. Jacobsen, Adv. Synth. Catal. 343 (2001) 5-26;
      (b) E. Vedejs, M. Jure, Angew. Chem. Int. Ed. 44 (2005) 3974-4001;
      (c) H. Pellissier, Adv. Synth. Catal. 353 (2011) 1613-1666;
      (d) C.E. Müller, P.R. Schreiner, Angew. Chem. Int. Ed. 50 (2011) 6012-6042;
      (e) R. Gurubrahamam, Y.S. Cheng, W.Y. Huang, K. Chen, ChemCatChem 8 (2016) 86-96;
      (f) O. Verho, J.E. Backvall, J. Am. Chem. Soc. 137 (2015) 3996-4009;
      (g) G. Ma, M.P. Sibi, Chem. -Eur. J. 21 (2015) 11644-11657.

    9. [9]

      (a) Y. Zhu, L. Sun, P. Lu, Y. Wang, ACS Catal. 4 (2014) 1911-1925;
      (b) Q. Wang, L. Pu, Synlett 24 (2013) 1340-1363;
      (c) P.J. Stang, F. Diederich, Modern Acetylene Chemistry, Wiley-VCH: Weinheim, 2008.

    10. [10]

      (a) Q.W. He, S.M. Ma, Chinese J. Org. Chem. 22 (2002) 375-387;
      (b) L. Pu, Tetrahedron 59 (2003) 9873-9886;
      (c) G. Lu, Y.M. Li, X.S. Li, A.S.C. Chan, Coordin. Chem. Rev. 249 (2005) 1736-1744;
      (d) B.M. Trost, A.H. Weiss, Adv. Synth. Catal. 351 (2009) 963-983;
      (e) B.M. Trost, M.J. Bartlett, A.H. Weiss, A.J.V. Wangelin, V.S. Chan, Chem. -Eur. J. 18 (2012) 16498-16509;
      (f) V. Bisai, V.K. Singh, Tetrahedron Lett. 57 (2016) 4771-4784;
      (g) H. Noda, N. Kumagai, M. Shibasaki, Asian J. Org. Chem. 7 (2018) 599-612.

    11. [11]

      (a) B. Jiang, Z. Chen, X. Tang, Org. Lett. 4 (2002) 3451-3453;
      (b) P.G. Cozzi, Angew. Chem. Int. Ed. 42 (2003) 2895-2898;
      (c) G. Lu, X. Li, X. Jia, W.L. Chan, A.S.C. Chan, Angew. Chem. Int. Ed. 42 (2003) 5057-5058;
      (d) P.G. Cozzi, S. Alesi, Chem. Commun. (2004) 2448-2449;
      (e) C. Chen, L. Hong, Z.Q. Xu, L. Liu, R. Wang, Org. Lett. 8 (2006) 2277-2280;
      (f) K. Tanaka, K. Kukita, T. Ichibakase, S. Kotanib, M. Nakajima, Chem. Commun. 47 (2011) 5614-5616;
      (g) T. Ohshima, T. Kawabata, Y. Takeuchi, et al., Angew. Chem. Int. Ed. 50 (2011) 6296-6300;
      (h) T. Wang, J.L. Niu, S.L. Liu, et al., Adv. Synth. Catal. 355 (2013) 927-937;
      (i) P. Smirnov, J. Mathew, A. Nijs, et al., Angew. Chem. Int. Ed. 52 (2013) 13717-13721;
      (j) Y. Zheng, Y. Tan, K. Harms, et al., J. Am. Chem. Soc. 139 (2017) 4322-4325;
      (k) B.P. Zavesky, J.S. Johnson, Angew. Chem. Int. Ed. 56 (2017) 8805-8808;
      (l) M.C. Schwarzer, A. Fujioka, T. Ishii, et al., Chem. Sci. 9 (2018) 3484-3493;
      (m) D.K. Friel, M.L. Snapper, A.H. Hoveyda, J. Am. Chem. Soc.130 (2008) 9942-9951;
      (n) H. Kawai, K. Tachi, E. Tokunaga, M. Shiro, N. Shibata, Org. Lett. 12 (2010) 5104-5107;
      (o) H. Noda, F. Amemiya, K. Weidner, N. Kumagai, M. Shibasaki, Chem. Sci. 8 (2017) 3260-3269;
      (p) W. Zhang, S. Ma, Chem. Commun. 54 (2018) 6064-6067.

    12. [12]

      (a) Z.Y. Cao, F. Zhou, J. Zhou, Acc. Chem. Res. 51 (2018) 1443-1454;
      (b) Y.L. Liu, X.P. Yin, J. Zhou, Chin. J. Chem. 36 (2018) 321-328;
      (c) X.P. Zeng, J. Zhou, J. Am. Chem. Soc. 138 (2016) 8730-8733;
      (d) Z.Y. Cao, J.S. Jiang, J. Zhou, Org. Biomol. Chem. 14 (2016) 5500-5504;
      (e) X.P. Zeng, Z.Y. Cao, X. Wang, et al., J. Am. Chem. Soc. 138 (2016) 416-425;
      (f) Y.L. Liu, F.M. Liao, Y.F. Niu, X.L. Zhao, J. Zhou, Org. Chem. Front.1 (2014) 742-747;
      (g) Y.L. Liu, J. Zhou, Acta Chim. Sinica 70 (2012) 1451-1456;
      (h) Y.L. Liu, J. Zhou, Chem. Commun. 48 (2012) 1919-1921;
      (i) Z.Y. Cao, Y. Zhang, C.B. Ji, J. Zhou, Org. Lett. 13 (2011) 6398-6401;
      (j) Y.L. Liu, B.L. Wang, J.J. Cao, et al., J. Am. Chem. Soc.132 (2010) 15176-15178;
      (k) J.J. Cao, F. Zhou, J. Zhou, Angew. Chem. Int. Ed. 49 (2010) 4976-4980.

    13. [13]

      (a) X.T. Gao, C.C. Gan, S.Y. Liu, et al., ACS Catal. 7 (2017) 8588-8593;
      (b) F. Zhou, S.L. Xie, X.T. Gao, et al., Green Chem. 19 (2017) 3908-3915.

    14. [14]

      (a) S. Kotani, K. Kukita, K. Tanaka, et al., J. Org. Chem. 79 (2014) 4817-4825;
      (b) B. Bieszczad, D.G. Gilheany, Angew. Chem. Int. Ed. 56 (2017) 4272-4276.

  • 加载中
    1. [1]

      Yongheng Ren Yang Chen Hongwei Chen Lu Zhang Jiangfeng Yang Qi Shi Lin-Bing Sun Jinping Li Libo Li . Electrostatically driven kinetic Inverse CO2/C2H2 separation in LTA-type zeolites. Chinese Journal of Structural Chemistry, 2024, 43(10): 100394-100394. doi: 10.1016/j.cjsc.2024.100394

    2. [2]

      Daheng WenWeiwei FangYongmei LiuTao Tu . Valorization of carbon dioxide with alcohols. Chinese Chemical Letters, 2024, 35(7): 109394-. doi: 10.1016/j.cclet.2023.109394

    3. [3]

      Jun ZhangZhiyao ZhengCan Zhu . Stereochemical editing: Catalytic racemization of secondary alcohols and amines. Chinese Chemical Letters, 2024, 35(5): 109160-. doi: 10.1016/j.cclet.2023.109160

    4. [4]

      He YaoWenhao JiYi FengChunbo QianChengguang YueYue WangShouying HuangMei-Yan WangXinbin Ma . Copper-catalyzed and biphosphine ligand controlled 3,4-boracarboxylation of 1,3-dienes with carbon dioxide. Chinese Chemical Letters, 2025, 36(4): 110076-. doi: 10.1016/j.cclet.2024.110076

    5. [5]

      Yi LiuZhe-Hao WangGuan-Hua XueLin ChenLi-Hua YuanYi-Wen LiDa-Gang YuJian-Heng Ye . Photocatalytic dicarboxylation of strained C–C bonds with CO2 via consecutive visible-light-induced electron transfer. Chinese Chemical Letters, 2024, 35(6): 109138-. doi: 10.1016/j.cclet.2023.109138

    6. [6]

      Tian-Yu GaoXiao-Yan MoShu-Rong ZhangYuan-Xu JiangShu-Ping LuoJian-Heng YeDa-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364

    7. [7]

      Li LiZhi-Xin YanChuan-Kun RanYi LiuShuo ZhangTian-Yu GaoLong-Fei DaiLi-Li LiaoJian-Heng YeDa-Gang Yu . Electro-reductive carboxylation of CCl bonds in unactivated alkyl chlorides and polyvinyl chloride with CO2. Chinese Chemical Letters, 2024, 35(12): 110104-. doi: 10.1016/j.cclet.2024.110104

    8. [8]

      Xinyu LiuJialin YangZonglin HeJiaoyan AiLina SongBaohua Liu . Linear polyurethanes with excellent comprehensive properties from poly(ethylene carbonate) diol. Chinese Chemical Letters, 2025, 36(1): 110236-. doi: 10.1016/j.cclet.2024.110236

    9. [9]

      Zhen ZhangXue-ling ChenXiu-Mei XieTian-Yu GaoJing QinJun-Jie LiChao FengDa-Gang Yu . Iron-promoted carbonylation–rearrangement of α-aminoaryl-tethered alkylidenecyclopropanes with CO2: Facile synthesis of quinolinofurans. Chinese Chemical Letters, 2025, 36(4): 110056-. doi: 10.1016/j.cclet.2024.110056

    10. [10]

      Ruilong GengLingzi PengChang Guo . Dynamic kinetic stereodivergent transformations of propargylic ammonium salts via dual nickel and copper catalysis. Chinese Chemical Letters, 2024, 35(8): 109433-. doi: 10.1016/j.cclet.2023.109433

    11. [11]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    12. [12]

      Meng ShanYongmei YuMengli SunShuping YangMengqi WangBo ZhuJunbiao Chang . Bifunctional organocatalyst-catalyzed dynamic kinetic resolution of hemiketals for synthesis of chiral ketals via hydrogen bonding control. Chinese Chemical Letters, 2025, 36(1): 109781-. doi: 10.1016/j.cclet.2024.109781

    13. [13]

      Huiju CaoLei Shi . sp1-Hybridized linear and cyclic carbon chain. Chinese Chemical Letters, 2025, 36(4): 110466-. doi: 10.1016/j.cclet.2024.110466

    14. [14]

      Ruixue LiuXiaobing DingQiwei LangGen-Qiang ChenXumu Zhang . Enantioselective and divergent construction of chiral amino alcohols and oxazolidin-2-ones via Ir-f-phamidol-catalyzed dynamic kinetic asymmetric hydrogenation. Chinese Chemical Letters, 2025, 36(3): 110037-. doi: 10.1016/j.cclet.2024.110037

    15. [15]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    16. [16]

      Yuan DongMutian MaZhenyang JiaoSheng HanLikun XiongZhao DengYang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049

    17. [17]

      Wei-Jia WangKaihong Chen . Molecular-based porous polymers with precise sites for photoreduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(1): 109998-. doi: 10.1016/j.cclet.2024.109998

    18. [18]

      Yuchen ZhangLifeng DingZhenghe XieXin ZhangXiaofeng SuiJian-Rong Li . Porous sorbents for direct capture of carbon dioxide from ambient air. Chinese Chemical Letters, 2025, 36(3): 109676-. doi: 10.1016/j.cclet.2024.109676

    19. [19]

      Jian Yang Guang Yang Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267

    20. [20]

      Yue ZhangXiaoya FanXun HeTingyu YanYongchao YaoDongdong ZhengJingxiang ZhaoQinghai CaiQian LiuLuming LiWei ChuShengjun SunXuping Sun . Ambient electrosynthesis of urea from carbon dioxide and nitrate over Mo2C nanosheet. Chinese Chemical Letters, 2024, 35(8): 109806-. doi: 10.1016/j.cclet.2024.109806

Metrics
  • PDF Downloads(14)
  • Abstract views(1220)
  • HTML views(167)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return