Citation: Wada Kenji, Yu Han, Feng Qi. Titania-supported iridium catalysts for dehydrogenative synthesis of benzimidazoles[J]. Chinese Chemical Letters, ;2020, 31(3): 605-608. doi: 10.1016/j.cclet.2019.05.054 shu

Titania-supported iridium catalysts for dehydrogenative synthesis of benzimidazoles

    * Corresponding authors.
    E-mail addresses: wadaken@med.kagawa-u.ac.jp (K. Wada).
  • Received Date: 30 March 2019
    Revised Date: 18 May 2019
    Accepted Date: 18 May 2019
    Available Online: 22 January 2020

Figures(5)

  • In this review, development of supported catalysts for the dehydrogenative synthesis of benzimidazoles from primary alcohols and 1, 2-phenylenediamine derivatives is briefly summarized. Among them, titania-supported iridium catalysts showed excellent activities under mild reaction conditions. Remarkably, the low-temperature activity of iridium catalyst was significantly affected by titania supports, and the reaction of 1, 2-phenylenediamine and benzyl alcohol in the presence of rutilesupported catalysts proceeded smoothly at 100 ℃ to give 2-phenylbenzimidazole in high yields of up to 88%. On the other hand, catalysts supported on anatase generally showed poor activity at 100 ℃. A significant relationship between CO uptake and the activity of titania-supported catalysts has been reported, indicating that well-reduced iridium species on rutile would be responsible for the predominant catalytic activity. The present results suggest the importance of the selection of suitable titania supports for the iridium catalysts.
  • 加载中
    1. [1]

      (a) D.A. Horton, G.T. Bourne, M.L. Smythe, Chem. Rev. 10 (2003) 893–930;
      (b) M. Salahuddin, M. Shaharyar, A. Mazumder, Arabian J. Chem. 10 (2017) 5157–5173 and references therein.

    2. [2]

      (a) J.B. Wright, Chem. Rev. 48 (1951) 397–541;
      (b) P.N. Preston, Chem. Rev. 74 (1974) 279–314;
      (c) M. Curini, F. Epifano, F. Montanari, O. Rosati, S. Taccone, Synlett (2004) 1832–1834;
      (d) J. Zhu, Z. Zhang, C. Miao, W. Liu, W. Sun, Tetrahedron 73 (2017) 3458–3462 and references therein.

    3. [3]

      E. Alcalde, I. Dinares, L.P. Garcia, T. Roca, Synthesis (1992) 395–398. 

    4. [4]

      P. Sun, Z. Hu, J. Heterocyclic Chem. 43 (2006) 773–775.  doi: 10.1002/jhet.5570430338

    5. [5]

      R.J. Perry, B.D. Wilson, J. Org. Chem. 58 (1993) 7016–7021.  doi: 10.1021/jo00077a019

    6. [6]

      C.T. Brain, S.A. Brunton, Tetrahedron Lett. 43 (2002) 1893–1895.  doi: 10.1016/S0040-4039(02)00132-6

    7. [7]

      T. Kondo, S. Yang, K. Huh, et al., Chem. Lett. (1991) 1275–1278.

    8. [8]

      A.J. Blacker, M.M. Farah, M.I. Hall, et al., Org. Lett. 11 (2009) 2039–2042.  doi: 10.1021/ol900557u

    9. [9]

      T. Hille, T. Irrgang, R. Kempe, Chem. -Eur. J. 20 (2014) 5569–5572.  doi: 10.1002/chem.201400400

    10. [10]

      P. Daw, Y. Ben-David, D. Milstein, ACS Catal. 7 (2017) 7456–7460.  doi: 10.1021/acscatal.7b02777

    11. [11]

      (a) P. Laszlo, Acc. Chem. Res. 19 (1986) 121–127;
      (b) Y. Izumi, M. Onaka, Adv. Catal. 38 (2018) 245–282;
      (c) K. Kaneda, Synlett (2007) 999–1015;
      (d) M. Tada, Y. Iwasawa, Coord. Chem. Rev. 251 (2007) 2702–2716;
      (e) L. Yin, J. Liebscher, Chem. Rev. 107 (2007) 133–173;
      (f) A. Corma, H. Garcia, Chem. Soc. Rev. 37 (2008) 2096–2126;
      (g) K. Wada, S. Hosokawa, M. Inoue, Catal. Surv. Asia 15 (2011) 1–11;
      (h) K. Wada, H. Miura, S. Hosokawa, M. Inoue, J. Jpn. Petro. Inst. 56 (2013) 69– 79.

    12. [12]

      S.M.A.H. Siddiki, T. Toyao, K. Shimizu, Green Chem. 20 (2018) 2933–2952.  doi: 10.1039/C8GC00451J

    13. [13]

      S. Tsukada, K. Wada, H. Miura, et al., Res. Chem. Intermed. 41 (2015) 9575– 9586.  doi: 10.1007/s11164-015-1983-8

    14. [14]

      J.W. Kim, J. He, K. Yamaguchi, N. Mizuno, Chem. Lett. 38 (2009) 920–921.  doi: 10.1246/cl.2009.920

    15. [15]

      Y. Shiraishi, Y. Sugano, S. Tanaka, T. Hirai, Angew. Chem. Int. Ed. 49 (2010) 1656–1660.  doi: 10.1002/anie.200906573

    16. [16]

      C. Chaudhari, S.M.A.H. Siddiki, K. Shimizu, Tetrahedron Lett. 56 (2015) 4885– 4888.  doi: 10.1016/j.tetlet.2015.06.073

    17. [17]

      (a) K. Tateyama, K. Wada, H. Miura, et al., Catal. Sci. Technol. 6 (2016) 1677– 1684; (b) T. Fukutake, K. Wada, G.C. Liu, S. Hosokawa, Q. Feng, Catal. Today 303 (2018)235–240.

    18. [18]

      (a) P.L. Reddy, R. Arundhathi, M. Tripathi, et al., Chem. Select 2 (2017) 3889– 3895;
      (b) J. Mokhtaria, A.H. Bozcheloei, Inorg. Chim. Acta 482 (2018) 726–731;
      (c) B. Guo, H.X. Li, S.Q. Zhang, D.J. Young, J.P. Lang, ChemCatChem 10 (2018) 5627–5636;
      (d) F. Feng, Y. Deng, Z. Cheng, et al., Catalysts 9 (2019) 8–18;
      (e) C. Baumler, R. Kempe, Chem. -Eur. J. 24 (2018) 8989–8993;
      (f) S. Sharma, A. Sharma, P.Das Yamini, Adv. Synth. Catal. 361 (2019) 67–72.

    19. [19]

      (a) T. Ohno, K. Sarukawa, M. Matsumura, New J. Chem. 26 (2002) 1167–1170; (b) D. Sun, W. Yang, L. Zhou, et al., Appl. Catal. B: Environ. 182 (2016) 85–93.

    20. [20]

      S. Liu, N. Tang, Q. Shang, et al., Chin. J. Catal. 39 (2018) 1189–1193  doi: 10.1016/S1872-2067(18)63077-3

    21. [21]

      A. Visikovskiy, K. Mitsuhara, Y. Kido, J. Vac. Sci. Technol. A 31 (2013) 061404. 

    22. [22]

      L. Wang, W. Zhang, X. Zheng, J. Zeng, et al., Nat. Energy 2 (2017) 869–876.  doi: 10.1038/s41560-017-0015-x

    23. [23]

      L. He, J.Q. Wang, Y. Gong, et al., Angew. Chem. Int. Ed. 50 (2011) 10216–10220.  doi: 10.1002/anie.201104089

  • 加载中
    1. [1]

      Yao WeiZhang YilinZhu HaiyanGe ChenyangWang Dawei . The synthesis and structure of pyridine-oxadiazole iridium complexes and catalytic applications: Non-coordinating-anion-tuned selective C-N bond formation. Chinese Chemical Letters, 2020, 31(3): 701-705. doi: 10.1016/j.cclet.2019.08.049

    2. [2]

      Ganesh R. Jadhav Mohammad U. Shaikh Rajesh P. Kale Charansingh H. Gill . Ammonium metavanadate: A novel catalyst for synthesis of 2-substituted benzimidazole derivatives. Chinese Chemical Letters, 2009, 20(3): 292-295. doi: 10.1016/j.cclet.2008.09.057

    3. [3]

      Wei-Wei CaiHui YangXing-Zhong Guo . A facile one-step route to synthesize titania hollow microspheres with incontinuous multicavities. Chinese Chemical Letters, 2014, 25(3): 441-446. doi: 10.1016/j.cclet.2013.12.002

    4. [4]

      Vivek T. Humne Shankaraiah G. Konda Kamal Hasanzadeh Pradeep D. Lokhande . Iodine-mediated facile dehydrogenation of dihydropyridazin-3(2H)one. Chinese Chemical Letters, 2011, 22(12): 1435-1438. doi: 10.1016/j.cclet.2011.07.019

    5. [5]

      Jian Fei Ding Zhang Feng Qin Xue Kuan Li Guo Fu Wang Jian Guo Wang . Coupling dehydrogenation of isobutane in the presence of carbon dioxide over chromium oxide supported on active carbon. Chinese Chemical Letters, 2008, 19(9): 1059-1062. doi: 10.1016/j.cclet.2008.05.041

    6. [6]

      N.C. DesaiN.R. ShihoryG.M. Kotadiya . Facile synthesis of benzimidazole bearing 2-pyridone derivatives as potential antimicrobial agents. Chinese Chemical Letters, 2014, 25(2): 305-307.

    7. [7]

      Vilas N. MahirePramod P. Mahulikar . Facile one-pot clean synthesis of benzimidazole motifs: Exploration on bismuth nitrate accelerated subtle catalysis. Chinese Chemical Letters, 2015, 26(8): 983-987. doi: 10.1016/j.cclet.2015.04.012

    8. [8]

      Sanjay K. Dabhade Rajesh O. Bora Mazahar Farooqui Charansingh H. Gill . DMP (1,1,1-Triacetoxy-1,1-dihydro-1,2-benziodoxol-3(1H)-one):A novel catalyst for synthesis of 2-substituted benzimidazoles derivatives. Chinese Chemical Letters, 2009, 20(8): 893-897. doi: 10.1016/j.cclet.2009.01.009

    9. [9]

      Lakshman S. Gadekar Balasaheb R. Arbad Machhindra K. Lande . Eco-friendly synthesis of benzimidazole derivatives using solid acid scolecite catalyst. Chinese Chemical Letters, 2010, 21(9): 1053-1056. doi: 10.1016/j.cclet.2010.03.038

    10. [10]

      Ya-Qing XuShen-Luan YuYan-Yun LiZhen-Rong DongJing-Xing Gao . Novel chiral C2-symmetric multidentate aminophosphine ligands for use in catalytic asymmetric reduction of ketones. Chinese Chemical Letters, 2013, 24(6): 527-530.

    11. [11]

      Cuong Duong-VietHousseinou BaYuefeng LiuLai Truong-PhuocJean-Mario NhutCuong Pham-Huu . Nitrogen-doped carbon nanotubes on silicon carbide as a metal-free catalyst. Chinese Journal of Catalysis, 2014, 35(6): 906-913. doi: 10.1016/S1872-2067(14)60116-9

    12. [12]

      Fang Li Jing Wei Chu Yuan Yuan Zhang Ye Qiang Chen Shi Zhong Luo . Synthesis of 2-methylpyrazine from cyclocondensation of ethylene diamine and propylene glycol over promoted copper catalyst. Chinese Chemical Letters, 2008, 19(6): 752-755. doi: 10.1016/j.cclet.2008.04.007

    13. [13]

      Ganesh R. Jadhav Mohammad U. Shaikh Rajesh P. Kale Charansingh H. Gill . 1-Heptanesulfonic acid sodium salt:One pot efficient synthesis of 2-aryl-1-arylmethyl-1H-1,3-benzo[d]imidazoles. Chinese Chemical Letters, 2009, 20(5): 535-538. doi: 10.1016/j.cclet.2008.12.004

    14. [14]

      Zhong Lv Zhang Zhi Jie Sun Fei Xue Xian Jin Luo Nai Yun Xiu Li Teng Zong Gen Peng . Design,synthesis and biological activity of some novelbenzimidazole derivatives against Coxsackie virus B3. Chinese Chemical Letters, 2009, 20(8): 921-923. doi: 10.1016/j.cclet.2009.03.035

    15. [15]

      PARK ChongYeonGHOSH TrishaMENG ZeDaKEFAYAT UllahVIKRAM NikamOH WonChun . Preparation of CuS-graphene oxide/TiO2 composites designed for high photonic effect and photocatalytic activity under visible light. Chinese Journal of Catalysis, 2013, 34(4): 711-717. doi: 10.1016/S1872-2067(11)60502-0

    16. [16]

      Zsolt PAPAndreea RADUIzabella Jolan HIDIGeorgian MELINTELucian DIAMANDESCUTraian POPESCULucian BAIAVirginia DANCIUMonica BAIA . Behavior of gold nanoparticles in a titania aerogel matrix: Photocatalytic activity assessment and structure investigations. Chinese Journal of Catalysis, 2013, 34(4): 734-740. doi: 10.1016/S1872-2067(11)60500-7

    17. [17]

      R. M. MohamedE. Aazam . Synthesis and characterization of P-doped TiO2 thin-films for photocatalytic degradation of butyl benzyl phthalate under visible-light irradiation. Chinese Journal of Catalysis, 2013, 34(6): 1267-1273. doi: 10.1016/S1872-2067(12)60572-5

    18. [18]

      Zhao Zheng-LeGu QingWu Xin-YanYou Shu-Li . Enantioselective synthesis of 10-allylanthrones via iridium-catalyzed allylic substitution reaction. Chinese Chemical Letters, 2016, 27(5): 619-622. doi: 10.1016/j.cclet.2016.02.017

    19. [19]

      Zhao ShiyongXu BolianYu LeiFan Yining . Catalytic dehydrogenation of propane to propylene over highly active PtSnNa/γ-Al2O3 catalyst. Chinese Chemical Letters, 2018, 29(3): 475-478. doi: 10.1016/j.cclet.2017.09.020

Metrics
  • PDF Downloads(3)
  • Abstract views(102)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return