Citation: Song Yanying, Wang Lili, Duan Zheng, Mathey François. Divergent intramolecular reactions between phosphines and alkynes[J]. Chinese Chemical Letters, ;2020, 31(2): 329-332. doi: 10.1016/j.cclet.2019.05.053 shu

Divergent intramolecular reactions between phosphines and alkynes

    * Corresponding author.
    E-mail address: duanzheng@zzu.edu.cn (Z. Duan).
    1 These two authors contributed equally to this work.
  • Received Date: 29 April 2019
    Revised Date: 18 May 2019
    Accepted Date: 27 May 2019
    Available Online: 28 May 2019

Figures(6)

  • A divergent intramolecular reaction of phosphine tethered alkyne in protic solvent was developed. This provided a novel and simple access to a large variety of (Z)-alkenylphosphine oxides and phospholane oxides. Our preliminary studies suggested that these divergent reactions are closely related to the reaction condition and molecular structure. A possible mechanism of C-P bond cleavage of a pentacoordinated hydroxyphosphorane intermediate was proposed.
  • 加载中
    1. [1]

      (a) B.M. Trost, C.J. Li, Modern Alkyne Chemistry: Catalytic and Atom-Economic Transformations, Wiley-VCH, Weinheim, 2014, pp. 1-6;
      (b) P.J. Stang, F. Diederich, Modern Acetylene Chemistry, Wiley, New York, 2008,
      (c) F. Diederich, P.J. Stang, R.R. Tykwinski, Acetylene chemistry, Chemistry, Biology and Material Science, Wiley-VCH, Weinheim, 2005.

    2. [2]

      (a) N. Sauermann, T.H. Meyer, Y. Qiu, et al., ACS Catal. 8 (2018) 7086-7103;
      (b) S.J. Hein, D. Lehnherr, H. Arslan, et al., Acc. Chem. Res. 50 (2017) 2776-2788;
      (c) I.V. Alabugin, E. Gonzalez-Rodriguez, Acc. Chem. Res. 51 (2018) 1206-1219;
      (d) T. Michinobu, F. Diederich, Angew. Chem. Int. Ed. 57 (2018) 3552-3577;
      (e) Y.Y. Hu, C.Y. Wang, ChemCatChem 11 (2019) 1167-1174;
      (f) M. Patel, R.K. Saunthwal, A.K. Verma, Acc. Chem. Res. 50 (2017) 240-254;
      (g) K. Lauder, A. Toscani, N. Scalacci, et al., Chem. Rev.117 (2017) 14091-14200;
      (h) B. Prabagar, N. Ghosh, A.K. Sahoo, Synlett. 28 (2017) 2539-2555;
      (i) B.M. Trost, J.T. Masters, Chem. Soc. Rev. 45 (2016) 2212-2238.

    3. [3]

      (a) T.Q. Chen, C.Q. Zhao, L.B. Han, J. Am. Chem. Soc. 140 (2018) 3139-3155;
      (b) T.Z. Huang, Y. Saga, H.Q. Guo, et al., J. Org. Chem. 83 (2018) 8743-8749;
      (c) H.M. Wang, Y.L. Li, Z.L. Tang, et al., ACS Catal. 8 (2018) 10599-10605;
      (d) L.L. Khemchyan, J.V. Ivanova, S.S. Zalesskiy, et al., Adv. Synth. Catal. 356 (2014) 771-780;
      (e) R.W. Shen, J.L. Yang, M. Zhang, et al., Adv. Synth. Catal. 359 (2017) 3626-3637;
      (f) S.M.Härling, B.E.Fener, S.Krieck, etal., Organometallics37 (2018)4380-4386;
      (g) P.Y. Geant, J.P. Uttaro, S. Peyrottes, et al., Eur. J. Org. Chem. (2017) 3850-3855;
      (h)H.Ohmiya, H.Yorimitsu, K.Oshima, Angew.Chem.Int.Ed.44 (2005)2368-2370;
      (i) P.H. Lee, S. Kim, A. Park, et al., Angew. Chem. Int. Ed. 49 (2010) 6806-6809;
      (j) M.Y. Niu, H. Fu, Y.Y. Jiang, et al., Chem. Commun. (2007) 272-274;
      (k)P.Nun, J.D.Egbert, M.J.Oliva-Madrid, etal., Chem.-Eur.J.18 (2012)1064-1067;
      (l) M. Hayashi, Y. Matsuura, Y. Watanabe, J. Org. Chem. 71 (2006) 9248-9251;
      (m) L.B. Han, M. Tanaka, J. Am. Chem. Soc. 118 (1996) 1571-1572;
      (n) L.B. Han, C. Zhang, H. Yazawa, et al., J. Am. Chem. Soc.126 (2004) 5080-5081;
      (o)C.Q.Zhao, L.B.Han, M.Goto, etal., Angew.Chem.Int.Ed.40 (2001)1929-1932;
      (p) I.G. Trostyanskaya, I.P. Beletskaya, Tetrahedron 70 (2014) 2556-2562;
      (q) V.P. Ananikov, J.V. Ivanova, L.L. Khemchyan, et al., Eur. J. Org. Chem. (2012) 3830-3840.

    4. [4]

      (a) Y.Z. Xu, Z.H. Wang, Z.J. Gan, et al., Org. Lett. 17 (2015) 1732-1734;
      (b) Y. Zhou, Z.J. Gan, B. Su, et al., Org. Lett. 17 (2015) 5722-5724;
      (c) X. Zhao, Z.M. Lu, Q.Y. Wang, et al., Organometallics 35 (2016) 3440-3443;
      (d) X. Zhao, Z.J. Gan, C.P. Hu, et al., Org. Lett. 19 (2017) 5814-5817;
      (e) J.J. Hou, Y.Z. Xu, Z.J. Gan, et al., J. Organomet. Chem. 879 (2019) 158-161;
      (f) G.Y. Tao, Z. Duan, F. Mathey, Org. Lett. 21 (2019) 2273-2276.

    5. [5]

      (a) A.Y. Peng, Y.X. Ding, J. Am. Chem. Soc. 125 (2003) 15006-15007;
      (b) H. Tsuji, K. Sato, L. Ilies, et al., Org. Lett. 10 (2008) 2263-2265;
      (c) T. Sanji, K. Shiraishi, T. Kashiwabara, et al., Org. Lett. 10 (2008) 2689-2692;
      (d) Y.R. Chen, W.L. Duan, J. Am. Chem. Soc. 135 (2013) 16754-16757;
      (e) B. Pérez-Saavedra, N. Vázquez-Galiñanes, C. Saá, et al., ACS Catal. 7 (2017) 6104-6109;
      (f) A.Fukazawa, E.Yamaguchi, E.Ito, etal., Organometallics30 (2011)3870-3879;
      (g)M.Arribat, E.Rémond, S.Clément, etal., J.Am.Chem.Soc.140 (2018)1028-1034;
      (h)S.Arndt, M.M.Hansmann, F.Rominger, etal., Chem.-Eur.J.23 (2017)5429-5433;
      (i) C.G. Wang, A. Fukazawa, Y. Tanabe, et al., Chem. -Asian J.13 (2018) 1616-1624.

    6. [6]

      (a) P.E. Garrou, Chem. Rev. 85 (1985) 171-185;
      (b) A.W. Parkins, Coord. Chem. Rev. 250 (2006) 449-467;
      (c) S.A. Macgregor, Chem. Soc. Rev. 36 (2007) 67-76;
      (d) L.L. Wang, H. Chen, Z. Duan, Chem. -Asian J. 13 (2018) 2164-2173;
      (e) Y.H. Lee, B. Morandi, Coord. Chem. Rev. 386 (2019) 96-118.

    7. [7]

      (a) X.W. Zhang, K.X. Huang, G.H. Hou, et al., Angew. Chem. Int. Ed. 49 (2010) 6421-6424;
      (b) D. Liu, X.M. Zhang, Eur. J. Org. Chem. (2005) 646-649;
      (c) W.J. Tang, X.M. Zhang, Angew. Chem. Int. Ed. 41 (2002) 1612-1614;
      (d) H. Shimizu, T. Saito, H. Kumobayashi, Adv. Synth. Catal. 345 (2003) 185-189;
      (e) B. Song, C.B. Yu, W.X. Huang, et al., Org. Lett. 17 (2015) 190-193;
      (f) H.L. Yang, E.F. Wang, P. Yang, et al., Org. Lett.19 (2017) 5062-5065;
      (g) Z.W. Lu, H.Y. Zhang, Z.P. Yang, et al., ACS Catal. 9 (2019) 1457-1463.

    8. [8]

      (a) C.J. O'Brien, J.L. Tellez, Z.S. Nixon, et al., Angew. Chem. Int. Ed. 48 (2009) 6836-6839;
      (b) D.J.Carr, J.S.Kudavalli, K.S.Dunne, etal., J.Org.Chem.78 (2013)10500-10505;
      (c)Y.M.Xiao, Z.H.Sun, H.C.Guo, etal., BeilsteinJ.Org.Chem.10 (2014)2089-2121.

    9. [9]

      (a) A.M.Gregson, S.M.Wales, S.J.Bailey, etal., J.Org.Chem.80 (2015)9774-9780;
      (b) D.J. Collins, L.E. Rowley, J.M. Swan, Aust. J. Chem. 27 (1974) 831-839;
      (c) Y.Q. Zhou, X.Y. Yan, C.J. Xi, Tetrahedron Lett. 51 (2010) 6136-6138;
      (d) K. Wlodarczyk, M. Stankevic, Tetrahedron 72 (2016) 5074-5090;
      (e) F.G. Mann, I. Milla, J. Chem. Soc. (1951) 2205-2206;
      (f)W.L.Orton, K.A.Mesch, L.D.Quin, PhosphorusSulfurRelat.Elem.5 (1979)349-357;
      (g) C.H. Chen, K.E. Brighty, Tetrahedron Lett. 21 (1980) 4421-4424;
      (h)S.Shah, M.C.Simpson, R.C.Smith, etal., J.Am.Chem.Soc.123 (2001)6925-6926;
      (i)H.H.Karsch, H.U.Reisacher, PhosphorusSulfurRelat.Elem.36 (1988)213-215;
      (j) T. Imamoto, T. Yoshizawa, K. Hirose, et al., Heter. Chem. 6 (1995) 99-104;
      (k) T.J. Brunker, B.J. Anderson, N.F. Blank, et al., Org. Lett. 9 (2007) 1109-1112.

    10. [10]

      (a) W. Winter, Angew. Chem. Int. Ed. 17 (1978) 947-948;
      (b) T. Butters, I. Haller-Pauls, W. Winter, Chem. Ber. 115 (1982) 578-592.

    11. [11]

      (a) G.W. Penton, C.K. Ingold, J. Chem. Soc. (1929) 2342-2357;
      (b) L. Horner, H. Hoffmann, H.G. Wippel, et al., Chem. Ber. 91 (1958) 52-57;
      (c) M. Zanger, C.A. Wander Werf, W.E. McEwen, J. Am. Chem. Soc. 81 (1959) 3806-3807;
      (d) G. Aksnes, J. Songstad, Acta Chem. Scand. 16 (1962) 1426-1432;
      (e) R.F. Hudson, M. Green, Angew. Chem. Int. Ed. 2 (1963) 11-20;
      (f) W.E. McEwen, K.F. Kumli, A. Blade-Font, et al., J. Am. Chem. Soc. 86 (1964) 2378-2384;
      (g) J.R. Corfield, S. Trippett, Chem. Commun. 19 (1970) 1267;
      (h) D.A. Allen, S.J. Grayson, I. Harness, et al., J. Chem. Soc. Perkin Trans. I 2(14) (1973) 1912-1915;
      (i) A. Schnell, J.C. Tebby, J. Chem. Soc. Perkin Trans. I 1 (1977) 1883-1886;
      (j)R.A.McClelland, G.H.McGall, G.Patel, J.Am.Chem.Soc.107 (1985)5204-5209;
      (k) D.G. Gilheany, N.T. Thompson, B.J. Walker, Tetrahedron Lett. 28 (1987) 3843-3844;
      (l)H.J.Cristau, P.Mouchet, PhosphorusSulfurSiliconRelat.Elem.107 (1995)135-144;
      (m) K.Y. Lee, J.E. Na, M.J. Lee, et al., Tetrahedron Lett. 45 (2004) 5977-5981.

    12. [12]

      B. Li, M.K. Zhang, X.L. Huang, et al., Org. Chem. Front. 4 (2017) 1854-1857.  doi: 10.1039/C7QO00310B

  • 加载中
    1. [1]

      Yu MaoYilin LiuXiaochen WangShengyang NiYi PanYi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443

    2. [2]

      Jian-Rong Li Jieying Hu Lai-Hon Chung Jilong Zhou Parijat Borah Zhiqing Lin Yuan-Hui Zhong Hua-Qun Zhou Xianghua Yang Zhengtao Xu Jun He . Insight into stable, concentrated radicals from sulfur-functionalized alkyne-rich crystalline frameworks and application in solar-to-vapor conversion. Chinese Journal of Structural Chemistry, 2024, 43(8): 100380-100380. doi: 10.1016/j.cjsc.2024.100380

    3. [3]

      Junmeng LuoQiongqiong WanSuming Chen . Chemistry-driven mass spectrometry for structural lipidomics at the C=C bond isomer level. Chinese Chemical Letters, 2025, 36(1): 109836-. doi: 10.1016/j.cclet.2024.109836

    4. [4]

      Qiongqiong WanYanan XiaoGuifang FengXin DongWenjing NieMing GaoQingtao MengSuming Chen . Visible-light-activated aziridination reaction enables simultaneous resolving of C=C bond location and the sn-position isomers in lipids. Chinese Chemical Letters, 2024, 35(4): 108775-. doi: 10.1016/j.cclet.2023.108775

    5. [5]

      Guoju GuoXufeng LiJie MaYongjia ShiJian LvDaoshan Yang . Photocatalyst/metal-free sequential C–N/C–S bond formation: Synthesis of S-arylisothioureas via photoinduced EDA complex activation. Chinese Chemical Letters, 2024, 35(11): 110024-. doi: 10.1016/j.cclet.2024.110024

    6. [6]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    7. [7]

      Peng WangJianjun WangNi SongXin ZhouMing Li . Radical dehydroxymethylative fluorination of aliphatic primary alcohols and diverse functionalization of α-fluoroimides via BF3·OEt2-catalyzed C‒F bond activation. Chinese Chemical Letters, 2025, 36(1): 109748-. doi: 10.1016/j.cclet.2024.109748

    8. [8]

      Yan-Bo LiYi LiLiang Yin . Copper(Ⅰ)-catalyzed diastereodivergent construction of vicinal P-chiral and C-chiral centers facilitated by dual "soft-soft" interaction. Chinese Chemical Letters, 2024, 35(7): 109294-. doi: 10.1016/j.cclet.2023.109294

    9. [9]

      Ao SunZipeng LiShuchun LiXiangbao MengZhongtang LiZhongjun Li . Stereoselective synthesis of α-3-deoxy-D-manno-oct-2-ulosonic acid (α-Kdo) derivatives using a C3-p-tolylthio-substituted Kdo fluoride donor. Chinese Chemical Letters, 2025, 36(3): 109972-. doi: 10.1016/j.cclet.2024.109972

    10. [10]

      Yang QinJiangtian LiXuehao ZhangKaixuan WanHeao ZhangFeiyang HuangLimei WangHongxun WangLongjie LiXianjin Xiao . Toeless and reversible DNA strand displacement based on Hoogsteen-bond triplex. Chinese Chemical Letters, 2024, 35(5): 108826-. doi: 10.1016/j.cclet.2023.108826

    11. [11]

      Fangzhou WangWentong GaoChenghui Li . A weak but inert hindered urethane bond for high-performance dynamic polyurethane polymers. Chinese Chemical Letters, 2024, 35(5): 109305-. doi: 10.1016/j.cclet.2023.109305

    12. [12]

      Yunkang TongHaiqiao HuangHaolan LiMingle LiWen SunJianjun DuJiangli FanLei WangBin LiuXiaoqiang ChenXiaojun Peng . Cooperative bond scission by HRP/H2O2 for targeted prodrug activation. Chinese Chemical Letters, 2024, 35(12): 109663-. doi: 10.1016/j.cclet.2024.109663

    13. [13]

      Jingyuan YangXinyu TianLiuzhong YuanYu LiuYue WangChuandong Dou . Enhancing stability of diradical polycyclic hydrocarbons via P=O-attaching. Chinese Chemical Letters, 2024, 35(8): 109745-. doi: 10.1016/j.cclet.2024.109745

    14. [14]

      Qinyu ZhaoYunchao ZhaoSongjing ZhongZhaoyang YueZhuoheng JiangShaobo WangQuanhong HuShuncheng YaoKaikai WenLinlin Li . Urchin-like piezoelectric ZnSnO3/Cu3P p-n heterojunction for enhanced cancer sonodynamic therapy. Chinese Chemical Letters, 2024, 35(12): 109644-. doi: 10.1016/j.cclet.2024.109644

    15. [15]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    16. [16]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

    17. [17]

      Chao-Long ChenRong ChenLa-Sheng LongLan-Sun ZhengXiang-Jian Kong . Anchoring heterometallic cluster on P-doped carbon nitride for efficient photocatalytic nitrogen fixation in water and air ambient. Chinese Chemical Letters, 2024, 35(4): 108795-. doi: 10.1016/j.cclet.2023.108795

    18. [18]

      Shengyu ZhaoXuan YuYufeng Zhao . A water-stable high-voltage P3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109933-. doi: 10.1016/j.cclet.2024.109933

    19. [19]

      Miaomiao LiMengwei YuanXingzi ZhengKunyu HanGenban SunFujun LiHuifeng Li . Highly polar CoP/Co2P heterojunction composite as efficient cathode electrocatalyst for Li-air battery. Chinese Chemical Letters, 2024, 35(9): 109265-. doi: 10.1016/j.cclet.2023.109265

    20. [20]

      Xue ZhaoRui ZhaoQian LiuHenghui ChenJing WangYongfeng HuYan LiQiuming PengJohn S Tse . A p-d block synergistic effect enables robust electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(11): 109496-. doi: 10.1016/j.cclet.2024.109496

Metrics
  • PDF Downloads(9)
  • Abstract views(1185)
  • HTML views(133)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return