Citation: Xu Xin-Ming, Chen De-Mao, Wang Zu-Li. Recent advances in sulfenylation of C(sp3)-H bond under transition metal-free conditions[J]. Chinese Chemical Letters, ;2020, 31(1): 49-57. doi: 10.1016/j.cclet.2019.05.048 shu

Recent advances in sulfenylation of C(sp3)-H bond under transition metal-free conditions




  • Received Date: 18 April 2019
    Accepted Date: 14 May 2019
    Available Online: 11 January 2020

Figures(27)

  • In recent years, the transition metal-free sulfenylation of C-H bond for C-S formation has been rapidly advanced and has become an eco-friendly synthetic tool for pharmacists and organic chemists. Various natural or bioactive molecules such as (hetero)arenes, olefins, carbonyl compounds, alkanes, have been employed for sulfenylating reactions. This review will focus on the recent five-year advances in C-S bond formation via direct sulfenylation of C(sp3)-H bonds under metal-free conditions and elaborate their mechanisms from a new perspective.
  • 加载中
    1. [1]

      (a) R.J. Cremlyn, An Introduction to Organosulfur Chemistry, Wiley, New York, 1996;
      (b) D. Meng, W. Chen, W. Zhao, J. Nat. Prod. 70 (2007) 824-829;
      (c) M. Kvasnika, M. Urban, N.J. Dickinson, J. Sarek, Nat. Prod. Rep. 32 (2015) 1303-1330.

    2. [2]

      M.H. Feng, B.Q. Tang, H.L. Steven, X.F. Jiang, Curr. Top. Med. Chem. 16(2016) 1200-1216.  doi: 10.2174/1568026615666150915111741

    3. [3]

      (a) D.A. Boyd, Angew. Chem. Int. Ed. 55 (2016) 15486-15502;
      (b) D. Wu, W. Pisula, M.C. Haberecht, X. Feng, K. Müllen, Org. Lett. 11 (2009) 5686-5689;
      (c) S.M. Yang, J.J. Shie, J.M. Fang, S.K. Nandy, Y.Y. Chang, J. Org. Chem. 67 (2002) 52085215.

    4. [4]

      (a) J.C. Carretero, Chem. Commun. 47(2011) 2207-2211;
      (b) H. Pellisier, Chiral Sulfur Ligands in Asymmetric Catalysis, RSC Catalysis Series 2, Cambridge, 2009.

    5. [5]

      (a) A. Kausar, S. Zulfiqar, M.I. Sarwar, Pol. Rev. 54 (2014) 185-267;
      (b) A.S. Rahate, K.R. Nemade, S.A. Waghuley, Rev. Chem. Eng. 29 (2013) 471-489;
      (c) N. Spassky, Phosphorus Sulfur Silicon Relat. Elem. 74 (1993) 71-92.

    6. [6]

      (a) J.F. Hartwig, Nature 455 (2008) 314-322;
      (b) Q. Lu, J. Zhang, F.L. Wei, et al., Angew. Chem. Int. Ed. 52 (2013) 7156-7159;
      (c) Q.Q. Lu, J. Zhang, G.L. Zhao, et al., J. Am. Chem. Soc.135 (2013) 11481-11484;
      (d) S.H. Hao, L.X. Li, D.Q. Dong, Z.L. Wang, Chin. J. Catal. 38 (2017) 1664-1667;
      (e) L.H. Lu, S.J. Zhou, W.B. He, et al., Org. Biomol. Chem. 16 (2018) 9064-9068;
      (f) L.Y. Xie, Y.J. Li, J. Qu, et al., Green Chem. 19 (2017) 5642-5646;
      (g) F.L. Zeng, X.L. Chen, S.Q. He, et al., Org. Chem. Front. 6 (2019) 1476-1480;
      (h) D. Yang, P. Sun, W. Wei, et al., Chem. -Eur. J. 24 (2018) 4423-4427;
      (i) L. Penga, Z. Hua, Z. Tang, Y. Jiao, X. Xu, Chin. Chem. Lett. 30 (2019) 1481-1487.

    7. [7]

      (a) M. Martinek, M. Korf, J. Srogl, Chem. Commun. 46 (2010) 4387-4389;
      (b) S.K. Sahoo, A. Banerjee, S. Chakraborty, B.K. Patel, ACS Catal. 2 (2012) 544-551;
      (c) O. Saidi, J. Marafie, A.E. Ledger, et al., J. Am. Chem. Soc. 133 (2011) 19298-19301;
      (d) N. Umierski, G. Manolikakes, Org. Lett. 15 (2013) 4972-4975;
      (e) Z. Wu, H. Song, X. Cui, et al., Org. Lett. 15 (2013) 1270-1273;
      (f) B. Niu, L. Xu, P. Xie, et al., ACS Comb. Sci. 16 (2014) 454-458.

    8. [8]

      (a) S.N. Zhang, S.H. Yang, L.H. Huang, et al., Chin. J. Org. Chem. 35 (2015) 2259-2274;
      (b) R. Chitrakar, A. Subbarayappa, Chem. Rec. 17 (2017) 1;
      (c) Y.Y. Liu, J. Xiong, L. Wei, Chin. J. Org. Chem. 37 (2017) 1667-1680;
      (d) D.Q. Dong, S.H. Hao, D.S. Yang, L.X. Li, Z.L. Wang, Eur. J. Org. Chem. 2017 (2017) 6576-6592;
      (e) L. Li, Y.Q. Ding, Mini-Rev. Org. Chem. 14 (2017) 407-418;
      (f) R. Dalpozzo, Org. Chem. Front. 4 (2017) 2063-2078;
      (g) M. Freckleton, A. Baeza, L. Benavent, R. Chinchilla, Asian. J. Org. Chem. 7 (2018) 1006-1014;
      (h) C.A. Jin, Q. Xu, G.F. Feng, Y. Jin, L.Y. Zahng, Chin. J. Org. Chem. 38 (2018) 775-790.

    9. [9]

      (a) A. Ghaderi, Tetrahedron 72 (2016) 4758-4782;
      (b) K.L. Dunbar, D.H. Scharf, A. Litomska, C. Hertweck, Chem. Rev. 117 (2017) 5521-5577;
      (c) J. Zhu, W.C. Yang, X.D. Wang, L. Wu, Adv. Synth. Catal. 360 (2018) 386-400;
      (d) Y. Luo, Y. Ma, Z. Hou, J. Am. Chem. Soc. 140 (2018) 114-117.

    10. [10]

      B.V. Varun, K. Gadde, K.R. Prabhu, Org. Lett. 17(2015) 2944-2947.  doi: 10.1021/acs.orglett.5b01221

    11. [11]

      H. Cao, J. Yuan, C. Liu, X.Q. Hu, A.W. Lei, RSC Adv. 5(2015) 41493-41496.  doi: 10.1039/C5RA04906G

    12. [12]

      Y. Jiang, J.X. Zou, L.T. Huang, et al., Org. Biomol. Chem. 16(2018) 1641-1645.  doi: 10.1039/C8OB00080H

    13. [13]

      Q. Chen, X. Wang, C. Wen, et al., RSC Adv. 7(2017) 39758-39761.  doi: 10.1039/C7RA06904A

    14. [14]

      Y. Liu, S.S. Badsara, Y. Liu, C. Lee, RSC Adv. 5(2015) 44299-44305.  doi: 10.1039/C5RA07204B

    15. [15]

      R. Rahaman, N. Devi, P. Barman, Tetrahedron Lett. 56(2015) 4224-4227.  doi: 10.1016/j.tetlet.2015.05.062

    16. [16]

      N. Devi, R. Rahaman, K. Sarma, P. Barman, Eur. J. Org. Chem. 2016(2016) 384-388.  doi: 10.1002/ejoc.201501148

    17. [17]

      B.M. Trost, Chem. Rev. 78(1978) 363-382.  doi: 10.1021/cr60314a002

    18. [18]

      B. Hu, Q. Zhang, S. Zhao, et al., Adv. Synth. Catal. 361(2019) 49-54.  doi: 10.1002/adsc.201801138

    19. [19]

      Y. Siddaraju, K.R. Prabhu, Org. Lett. 18(2016) 6090-6093.  doi: 10.1021/acs.orglett.6b03084

    20. [20]

      Y. Siddaraju, K.R. Prabhu, J. Org. Chem. 83(2018) 2986-2992.  doi: 10.1021/acs.joc.7b03290

    21. [21]

      Y. Siddaraju, K.R. Prabhu, Org. Biomol. Chem. 15(2017) 5191-5196.  doi: 10.1039/C7OB00561J

    22. [22]

      N. Devi, R. Rahaman, K. Sarma, T. Khan, P. Barman, Eur. J. Org. Chem. 2017(2017) 1520-1525.

    23. [23]

      (a) P.N. Kalaria, S.P. Satasia, J.R. Avalani, D.K. Raval, Eur. J. Med. Chem. 83 (2014) 655-664;
      (b) S.C. Karad, V.B. Purohit, D.K. Raval, Eur. J. Med. Chem. 84 (2014) 51-58.

    24. [24]

      R.D. Kamani, V.B. Purohit, R.P. Thummar, et al., ChemistrySelect 2(2017) 9670-9673.  doi: 10.1002/slct.201701924

    25. [25]

      (a) H. Jin, W. Wang, Z. Yang, et al., Heterocycles 96 (2018) 1786-1794;
      (b) X. Zhao, X. Lu, A. Wei, et al., Tetrahedron Lett. 57 (2016) 5330-5333;
      (c) X. Zhao, A. Wei, X. Lu, K. Lu, Molecules 22 (2017) 1208-1219.

    26. [26]

      X. Liu, H. Cui, D. Yang, et al., RSC Adv. 6(2016) 51830-51833.  doi: 10.1039/C6RA09739A

    27. [27]

      Q. Chen, Y. Huang, X. Wang, et al., Tetrahedron Lett. 58(2017) 3928-3931.  doi: 10.1016/j.tetlet.2017.08.067

    28. [28]

      (a) A.F. Vaquer, A. Frongia, F. Secci, E. Tuveri, RSC Adv. 5 (2015) 96695-96704;
      (b) H.W. Noh, C. Lee, H.Y. Jang, Bull. Korean Chem. Soc. 38 (2017) 389-391;
      (c) J.Q. Zhao, S.W. Luo, X.M. Zhang, et al., Tetrahedron 73 (2017) 5444-5450.

    29. [29]

      Y. Li, F. Zhu, Z. Wang, X.F. Wu, Chem. -Asian J. 11(2016) 3503-3507.  doi: 10.1002/asia.201601376

    30. [30]

      D. Wang, Z. Liu, Z. Wang, X. Ma, P. Yu, Green Chem. 21(2019) 157-163.  doi: 10.1039/C8GC03072C

    31. [31]

      Y. Liu, X. Yuan, K. Su, Y. Tian, B. Chen, Eur. J. Org. Chem. 2019(2019) 1649-1652.  doi: 10.1002/ejoc.201801806

    32. [32]

      Q. Chen, G. Yu, X. Wang, Y. Ou, Y. Huo, Green Chem. 21(2019) 798-802.  doi: 10.1039/C8GC03898H

    33. [33]

      S.K. Ayer, J.L. Roizen, J. Org. Chem. 84(2019) 3508-3523.  doi: 10.1021/acs.joc.9b00105

    34. [34]

      K. Liao, F. Zhou, J. Yu, W. Gao, J. Zhou, Chem. Commun. 51(2015) 16255-16258.  doi: 10.1039/C5CC07010D

    35. [35]

      L. Huang, J. Li, Y. Zhao, et al., J. Org. Chem. 80(2015) 8933-8941.  doi: 10.1021/acs.joc.5b01606

    36. [36]

      Y. You, Z. Wu, Z. Wang, et al., J. Org. Chem. 80(2015) 8470-8477.  doi: 10.1021/acs.joc.5b01491

    37. [37]

      X. Gao, J. Han, L. Wang, Synthesis 48(2016) 2603-2611.  doi: 10.1055/s-0035-1560435

    38. [38]

      Y. E, T. Yuan, L. Yin, Y. Xu, Tetrahedron Lett. 58(2017) 2521-2524.  doi: 10.1016/j.tetlet.2017.05.015

    39. [39]

      S.J. Singha Roy, S. Mukherjee, Org. Biomol. Chem. 15(2017) 6921-6925.  doi: 10.1039/C7OB01714F

    40. [40]

      J. Han, Y. Zhang, X.Y. Wu, H.N.C. Wong, Chem. Commun. 55(2019) 397-400.  doi: 10.1039/C8CC09049A

    41. [41]

      L. Cui, Y. You, X. Mi, S. Luo, Org. Chem. Front. 5(2018) 2313-2316.  doi: 10.1039/C8QO00496J

    42. [42]

      K. Nagata, D. Sano, O. Aoyama, et al., Heterocycles 92(2016) 631-635.  doi: 10.3987/COM-16-13414

    43. [43]

      F. Rota, L. Benhamou, T.D. Sheppard, Synlett 27(2016) 33-36.  doi: 10.1055/s-0035-1560769

  • 加载中
    1. [1]

      Min JiangHai-Jun YangYong LiZhi-Ying JiaHua Fu . Metal-free synthesis of substituted phenols from arylboronic acids in water at room temperature. Chinese Chemical Letters, 2014, 25(05): 715-719. doi: 10.1016/j.cclet.2014.03.018

    2. [2]

      Bin SunWen-Peng MaiLiang-Ru YangPu MaoJin-Wei YuanYong-Mei Xiao . A novel and facile synthesis of 4-arylquinolin-2(1H)-ones under metal-free conditions. Chinese Chemical Letters, 2015, 26(8): 977-979. doi: 10.1016/j.cclet.2015.05.008

    3. [3]

      Zou HongyanWang Zhong-LiangCao YangHuang Genping . Mechanism of rhodium(Ⅲ)-catalyzed formal C(sp3)-H activation/spiroannulation of α-arylidene pyrazolones with alkynes:A computational study. Chinese Chemical Letters, 2018, 29(9): 1355-1358. doi: 10.1016/j.cclet.2017.10.034

    4. [4]

      Lu FanYang JieZhou LingWang XinyueYang YinLi Jumei . Enhanced electrochemical performance and mechanism study of AgLi1/3Sn2/3O2 for lithium storage. Chinese Chemical Letters, 2019, 30(12): 2017-2020. doi: 10.1016/j.cclet.2019.04.019

    5. [5]

      Iker AGIRREZABAL-TELLERIACristina GARCÍA-SANCHOPedro MAIRELES-TORRESPedro Luis ARIAS . Dehydration of xylose to furfural using a Lewis or Brönsted acid catalyst and N2 stripping. Chinese Journal of Catalysis, 2013, 34(7): 1402-1406. doi: 10.1016/S1872-2067(12)60599-3

    6. [6]

      Ju Wang Zuo Yin Yang Xiu Li Wang Jing Chang Zhang Wei Liang Cao . Theoretical study on conformational conversion of 1,3-dioxane inside a capsular host. Chinese Chemical Letters, 2007, 18(2): 244-246. doi: 10.1016/j.cclet.2006.12.039

    7. [7]

      CHEN BihuaELAGEED Elnazeer H. M.ZHANG YongyaGAO Guohua . BmmimOAc-Catalyzed Direct Condensation of 2-(Arylamino) Alcohols to Synthesize 3-Arylthiazolidine-2-thiones. Acta Physico-Chimica Sinica, 2018, 34(8): 952-958. doi: 10.3866/PKU.WHXB201803081

    8. [8]

      ZHAO YueCUI JiatongHU JichuangMA Jiabi . Reactivities of VO1–4+ Toward n-CmH2m+2 (m = 3, 5, 7) as Functions of Oxygen Content and Carbon Chain Length. Acta Physico-Chimica Sinica, 2019, 35(5): 531-538. doi: 10.3866/PKU.WHXB201805231

    9. [9]

      Chun-Xian HeZhi-Bo JiangHua-Qing CuiDa-Li Yin . A nucleophilic 1, 3-rearrangement leading to 3, 4-disubstituted 3, 4-dihydroquinolines. Chinese Chemical Letters, 2016, 27(7): 1036-1039. doi: 10.1016/j.cclet.2016.02.030

    10. [10]

      REN ChunxingLI XiaoxiaGUO Li . Reaction Mechanisms in the Thermal Decomposition of CL-20 Revealed by ReaxFF Molecular Dynamics Simulations. Acta Physico-Chimica Sinica, 2018, 34(10): 1151-1162. doi: 10.3866/PKU.WHXB201802261

    11. [11]

      Meng WangYu-Xi Xu . Design and construction of three-dimensional graphene/conducting polymer for supercapacitors. Chinese Chemical Letters, 2016, 27(8): 1437-1444. doi: 10.1016/j.cclet.2016.06.048

    12. [12]

      Zhou ChaoDiao PinhuiLi XiaojiGe YanqinGuo Cheng . Facile photochemical synthesis of α-ketoamides and quinoxalines from amines and benzoylacetonitrile under mild conditions. Chinese Chemical Letters, 2019, 30(2): 371-374. doi: 10.1016/j.cclet.2018.06.019

    13. [13]

      Dai ShengpingKong XiangfeiWang GuixiaXia LitingLiu PengYu Caili . Advances in Asymmetric meso-Substituted Porphyrins. Chemistry, 2016, 79(4): 314-320.

    14. [14]

      Sun GuanghuiJin YuekangWang ZhengmingXu HongChai PengHuang Weixin . Site-and surface species-dependent propylene oxidation with molecular oxygen on gold surface. Chinese Chemical Letters, 2018, 29(12): 1883-1887. doi: 10.1016/j.cclet.2018.10.027

    15. [15]

      Li JunLi YangjuXiong ZhaokunYao GangLai Bo . The electrochemical advanced oxidation processes coupling of oxidants for organic pollutants degradation: A mini-review. Chinese Chemical Letters, 2019, 30(12): 2139-2146. doi: 10.1016/j.cclet.2019.04.057

    16. [16]

      Xu XinmingChen DemaoWang Zuli . Recent Progress in Transition Metal-Free C-Heteroatom Bond Formation by Functionalization of C-H Bond in Imidazole-Fused Heterocycles. Chinese Journal of Organic Chemistry, 2019, 39(12): 3338-3352. doi: 10.6023/cjoc201904068

    17. [17]

      Jing LiaJin HuiaGuan MeibWu XiaohuaaWang QiantaoaWu Yonga . Metal-Free Oxidation of Thiols by N-Fluorobenzenesulfonimide: A Rapid and Efficient Method to Synthesize Disulfides. Chinese Journal of Organic Chemistry, 2018, 38(3): 692-697. doi: 10.6023/cjoc201709039

    18. [18]

      Li Xin-LeLang Xiao-MeiYang Lian-MingZhou Sheng-YuanHu Hong-FanXue ShanSun XinXin Shi-Xuan . Nickel-catalyzed C-N crossing coupling reaction: The synthetic method for N-aryl substituted indenoindole. Chinese Chemical Letters, 2017, 28(3): 569-574. doi: 10.1016/j.cclet.2016.11.002

    19. [19]

      Wen Bin CUI Jie ZHOU Lei CHEN Xiao Bin DENG Chun GUO . A Convenient Synthetic Method of Metal Dendritic Porphyrins. Chinese Chemical Letters, 2006, 17(8): 999-1001.

    20. [20]

      Wang LeileiZhang MinZhang YulongLiu QishunZhao XiaohuiLi Jiang-ShengLuo ZidanWei Wei . Metal-free visible-light-induced oxidative cyclization reaction of 1, 6-enynes and arylsulfinic acids leading to sulfonylated benzofurans. Chinese Chemical Letters, 2020, 31(1): 67-70. doi: 10.1016/j.cclet.2019.05.041

Metrics
  • PDF Downloads(1)
  • Abstract views(25)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return