Citation: Xu Qing-Song, Li Chen, Xu Yong, Xu Defeng, Shen Mei-Hua, Xu Hua-Dong. Ruthenium catalyzed amination cyclization of 1, 2, 4-butanetriol with primary amines: A borrowing hydrogen strategy for 3-pyrrolidinol synthesis[J]. Chinese Chemical Letters, ;2020, 31(1): 103-106. doi: 10.1016/j.cclet.2019.05.027 shu

Ruthenium catalyzed amination cyclization of 1, 2, 4-butanetriol with primary amines: A borrowing hydrogen strategy for 3-pyrrolidinol synthesis

    * Corresponding authors.
    E-mail addresses: shenmh@cczu.edu.cn (M.-H. Shen) hdxu@cczu.edu.cn (H.-D. Xu).
  • Received Date: 6 March 2019
    Revised Date: 30 April 2019
    Accepted Date: 30 April 2019
    Available Online: 22 January 2020

Figures(4)

  • A ruthenium based catalytic system ([Ru(p-cymene)Cl2]2/XantPhos with substoichiometric Cs2CO3) has been established to effectively achieve the first direct amination cyclization of 1, 2, 4-butanetriol with primary aromatic amines. The product of this sustainable hydrogen autotransfer process is valuable Naryl-3-pyrrolidinol.
  • 加载中
    1. [1]

      (a) T. Irrgang, R. Kempe, Chem. Rev. 119 (2019) 2524-2549;
      (b) A. Corma, J. Navas, M.J. Sabater, Chem. Rev. 118 (2018) 1410-1459;
      (c) X. Ma, C. Su, Q. Xu, Top. Curr. Chem. 374 (2016) 1-74;
      (d) Q. Yang, Q. Wang, Z. Yu, Chem. Soc. Rev. 44 (2015) 2305-2329.

    2. [2]

      (a) S. Whitney, R. Grigg, A. Derrick, A. Keep, Org. Lett. 9 (2007) 3299-3302;
      (b) C. Loefberg, R. Grigg, M.A. Whittaker, A. Keep, A. Derrick, J. Org. Chem. 71 (2006) 8023-8027;
      (c) R. Grigg, T.R.B. Mitchell, S. Sutthivaiyakit, N. Tongpenyai, Chem. Commun. (1981) 611-612.

    3. [3]

      Y. Watanabe, Y. Tsuji, Y. Ohsugi, Tetrahedron Lett. 22 (1981) 2667-2670.  doi: 10.1016/S0040-4039(01)92965-X

    4. [4]

      (a) S. Elangovan, J. Neumann, J.B. Sortais, et al., Nat. Commun. 7 (2016) 12641;
      (b) S. Baehn, S. Imm, K. Mevius, et al., Chem. Eur. J. 16 (2010) 3590-3593;
      (c) S. Imm, S. Baehn, L. Neubert, H. Neumann, M. Beller, Angew. Chem. Int. Ed. 49 (2010) 8126-8129.

    5. [5]

      (a) R. Kawahara, K.I. Fujita, R. Yamaguchi, Adv. Synth. Catal. 353 (2011) 1161-1168;
      (b) R. Kawahara, K.I. Fujita, R. Yamaguchi, J. Am. Chem. Soc. 132 (2010) 15108-15111.

    6. [6]

      (a) O. Saidi, A.J. Blacker, M.M. Farah, S.P. Marsden, J.M.J. Williams, Chem. Commun. 46 (2010) 1541-1543;
      (b) O. Saidi, A.J. Blacker, G.W. Lamb, et al., Org. Process Res. Dev. 14 (2010) 1046-1049.

    7. [7]

      (a) R. Martinez, D.J. Ramon, M. Yus, Org. Biomol. Chem. 7 (2009) 2176-2181;
      (b) R. Martinez, G.J. Brand, D.J. Ramon, M. Yus, Tetrahedron Lett. 46 (2005) 3683-3686.

    8. [8]

      (a) S. Michlik, R. Kempe, Chem. Eur. J. 16 (2010) 13193-13198;
      (b) B. Blank, R. Kempe, J. Am. Chem. Soc. 132 (2010) 924-925.

    9. [9]

      C. Gunanathan, D. Milstein, Angew. Chem. Int. Ed. 47 (2008) 8661-8664.  doi: 10.1002/anie.200803229

    10. [10]

      (a) S. Liu, R. Chen, G.J. Deng, Chem. Lett. 40 (2011) 489-491;
      (b) Y. Liu, W. Chen, C. Feng, G. Deng, Chem. Asian J. 6 (2011) 1142-1146.

    11. [11]

      S.L. Feng, C.Z. Liu, Q. Li, X.C. Yu, Q. Xu, Chin. Chem. Lett. 22 (2011) 1021-1024.  doi: 10.1016/j.cclet.2011.03.014

    12. [12]

      (a) X. Cui, F. Shi, Y. Zhang, Y. Deng, Tetrahedron Lett. 51 (2010) 2048-2051;
      (b) X. Cui, F. Shi, M.K. Tse, et al., Adv. Synth. Catal. 351 (2009) 2949-2958.

    13. [13]

      (a) B. Emayavaramban, P. Chakraborty, E. Manoury, R. Poli, B. Sundararaju, Org. Chem. Front. 6 (2019) 852-857;
      (b) C.M. Hsiao, Y.F. Chen, C.H. Lin, et al., J. Organomet. Chem. 861 (2018) 10-16;
      (c) G. Zhang, Z. Yin, S. Zheng, Org. Lett. 18 (2016) 300-303;
      (d) T. Yan, B.L. Feringa, K. Barta, ACS Catal. 6 (2016) 381-388;
      (e) Q. Zou, C. Wang, J. Smith, D. Xue, J. Xiao, Chem. Eur. J. 21 (2015) 9656-9661;
      (f) Y. Zhang, X. Qi, X. Cui, F. Shi, Y. Deng, Tetrahedron Lett. 52 (2011) 1334-1338;
      (g) J.Y. Zhang, X. Huang, Q.Y. Shen, J.Y. Wang, G.H. Song, Chin. Chem. Lett. 29 (2018) 197-200;
      (h) T.T. Zhang, J.Y. Jiang, Y.H. Wang, Chin. Chem. Lett. 28 (2017) 307-311.

    14. [14]

      C. Gunanathan, D. Milstein, Science 341 (2013) 249.

    15. [15]

      (a) J. Leonard, A.J. Blacker, S.P. Marsden, et al., Org. Process Res. Dev. 19 (2015) 1400-1410;
      (b) M.A. Berliner, S.P.A. Dubant, T. Makowski, et al., Org. Process Res. Dev. 15 (2011) 1052-1062.

    16. [16]

      (a) T. Yan, B.L. Feringa, K. Barta, Nat. Commun. 5 (2014) 5602;
      (b) A.B. Enyong, B. Moasser, J. Org. Chem. 79 (2014) 7553-7563;
      (c) G. Cami-Kobeci, J.M.J. Williams, Chem. Commun. (2004) 1072-1073;
      (d) X. Cui, X. Dai, Y. Deng, F. Shi, Chem. Eur. J. 19 (2013) 3665-3675;
      (e) A. Wetzel, S. Woeckel, M. Schelwies, et al., Org. Lett. 15 (2013) 266-269;
      (f) M.H.S.A. Hamid, C.L. Allen, G.W. Lamb, et al., J. Am. Chem. Soc. 131 (2009) 1766-1774;
      (g) I. Yamaguchi, T. Sakano, H. Ishii, K. Osakada, T. Yamamoto, J. Organomet. Chem. 584 (1999) 213-216;
      (h) D. Seyferth, R.C. Hui, J. Org. Chem. 50 (1985) 1985-1987;
      (i) L.Y. Xie, S. Peng, L.L. Jiang, et al., Org. Chem. Front. 6 (2019) 167-171.

    17. [17]

      (a) A.J.A. Watson, A.C. Maxwell, J.M.J. Williams, J. Org. Chem. 76 (2011) 2328-2331;
      (b) R.A.T.M. Abbenhuis, J. Boersma, G. van Koten, J. Org. Chem. 63 (1998) 4282-4290.

    18. [18]

      (a) K.O. Marichev, J.M. Takacs, ACS Catal. 6 (2016) 2205-2210;
      (b) K.I. Fujita, T. Fujii, R. Yamaguchi, Org. Lett. 6 (2004) 3525-3528.

    19. [19]

      (a) J. Katz, J. Jewell, J. Jung, et al., PT: WO2010017047A1, 2010;
      (b) G.M. Bright, PT: WO9952907A1, 1999;
      (c) A. Naylor, D.B. Judd, D.I.C. Scopes, A.G. Hayes, P.J. Birch, J. Med. Chem. 37 (1994) 2138-2144;
      (d) L. Li, Q. Chen, X. Xiong, et al., Chin. Chem. Lett. 29 (2018) 1893-1896.

    20. [20]

      (a) K. Zong, Bull. Korean Chem. Soc. 26 (2005) 717-718;
      (b) E.J. Trybulski, R.H. Kramss, R.M. Mangano, H.J. Brabander, G. Francisco, Bioorg. Med. Chem. Lett. 2 (1992) 827-832;
      (c) A. Dicko, M. Montury, M. Baboulene, Tetrahedron Lett. 28 (1987) 6041-6044;
      (d) M.M. Bowers Nemia, J. Lee, M.M. Joullie, Synth. Commun. 13 (1983) 1117-1123.

    21. [21]

      A.J. Rawlings, L.J. Diorazio, M. Wills, Org. Lett. 17 (2015) 1086-1089.  doi: 10.1021/ol503587n

  • 加载中
    1. [1]

      Ma XiantaoLi BoXiao YinglinYu XiaochunSu ChenliangXu Qing . Synthesis of Alkylated Amides and Amines by Cu(OTf)2-Catalyzed N-Alkylation of Nitriles and Amines with Alcohols. Chinese Journal of Organic Chemistry, 2017, 37(8): 2034-2043. doi: 10.6023/cjoc201703028

    2. [2]

      Ya-Qiong LiYun-Bin ChenZhi-Zhen Huang . Direct N-alkylation of amines with alcohols using AlCl3 as a Lewis acid. Chinese Chemical Letters, 2014, 25(12): 1540-1544. doi: 10.1016/j.cclet.2014.07.006

    3. [3]

      Jian Hong Liu Dong Liang Bin Bin Fan Rui Feng Li Hua Chen . Enantioselective hydrogenation of acetophenone by (1S, 2S)-DPEN-Ru (Ⅱ) Cl2 (PPh3)2 encapsulated in Al-MCM-41. Chinese Chemical Letters, 2010, 21(7): 802-806. doi: 10.1016/j.cclet.2010.03.011

    4. [4]

      Ke Fen YUE Huan GU Zhen SHI . The Synthesis of Dialdehyde from Sodium Hydrogen Telluride with 1,1',3,3'-Tetramethyl-2,2'-bis-benzimidazolium Salt. Chinese Chemical Letters, 2002, 13(9): 836-838.

    5. [5]

      TANG Hai-FeiTIAN Qing-PingLI Guo-YuanJIAN Xin-TianREN LiZHOU Ge-Rong . Theoretical Investigations into the Intermolecular Hydrogen-bonding Interactions between Azacyclopentane-2-one and N-Methylol Ethanone. Chinese Journal of Structural Chemistry, 2014, 33(1): 135-147.

    6. [6]

      Li Fu-eWang ZhiyuPeng LianshunLiu HaishengLu RichangHe GuozhongLou Nanquan . BEAM-GAS CHEMILUMINESCENT REACTIONS OF Sr(1S) AND Sr(3P)+ Cl2. Acta Physico-Chimica Sinica, 1989, 5(04): 432-437. doi: 10.3866/PKU.WHXB19890411

    7. [7]

      Liu Shu-TangLiu Qi-WangWu Bin-FangSuo Quan-LingHu XiangWang Be-Yi . SYNTHESIS AND CRYSTAL STRUCTURE OF Fe3(CO)8[P[SC6H5)Cl2](μ3-S)2. Acta Physico-Chimica Sinica, 1990, 6(06): 730-734. doi: 10.3866/PKU.WHXB19900618

    8. [8]

      Chen RuijieLi DiFang ZhenyuanHuang YuanyongLuo BifuShi Weidong . Controlling Self-Assembly of 3D In2O3 Nanostructures for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2020, 36(3): 1903047-0. doi: 10.3866/PKU.WHXB201903047

    9. [9]

      Bin DAI Wei Min GONG Xiu Ling ZHANG Ren HE . Methane Coupling Using Hydrogen Plasma and Pt/γ-Al2O3 Catalyst. Chinese Chemical Letters, 2002, 13(8): 711-713.

    10. [10]

      Arash Ghorbani-ChoghamaraniParisa Zamani . Three component reactions:An efficient and green synthesis of 3, 4-dihydropyrimidin-2-(1H)-ones and thiones using silica gel-supported L-pyrrolidine-2-carboxylic acid-4-hydrogen sulfate. Chinese Chemical Letters, 2013, 24(9): 804-808.

    11. [11]

      Ran RAN Guo Xing XIONG Shi Shan SHENG Wei Shen YANG . The Effects of CO2 Addition on the Partial Oxidation of Heptane for Hydrogen Generation. Chinese Chemical Letters, 2004, 15(5): 605-608.

    12. [12]

      Huang JuanjuanDu JianmeiDu HaiweiXu GengshengYuan Yupeng . Control of Nitrogen Vacancy in g-C3N4 by Heat Treatment in an Ammonia Atmosphere for Enhanced Photocatalytic Hydrogen Generation. Acta Physico-Chimica Sinica, 2020, 36(7): 1905056-0. doi: 10.3866/PKU.WHXB201905056

    13. [13]

      Sun Lin Feng Chuan Zhi Liu Qiang Li Xiao Chun Yu Qing Xu . Rhodium-catalyzed aerobic N-alkylation of sulfonamides with alcohols. Chinese Chemical Letters, 2011, 22(9): 1021-1024. doi: 10.1016/j.cclet.2011.03.014

    14. [14]

      Zhi Min JIN Yuan Jiang PAN Si Hua SHANG Duan Jun XU Yuan Zhi XU . The 1:2 Complex of Piperazine with Some Phenols:Hydrogen Bonding Pattern Involved in Transition States in Solution. Chinese Chemical Letters, 2000, 12(2): 105-106.

    15. [15]

      Nader Ghaffari Khaligh . Synthesis of benzo[g]indeno[2,1-b]quinoline derivatives via four-component and one-pot synthesis in presence of 3-methyl-1-sulfonic acid imidazolium hydrogen sulfate. Chinese Journal of Catalysis, 2014, 35(11): 1858-1863. doi: 10.1016/S1872-2067(14)60186-8

    16. [16]

      Deepanjali PandeyShahid S. NarviGopal K. MehrotraRaymond J. Butcher . Hydrogen Bonded 3D Molecular Self Assembly Constructed from [(Ni(nicotinamide)2(thiocyanate)2(H2O)2] Complex Showing Spin Canted Anti-ferromagnetic Character. Chinese Journal of Structural Chemistry, 2015, 34(5): 777-785. doi: 10.14102/j.cnki.0254-5861.2011-0259

    17. [17]

      Ashif H. TamboliAvinash A. ChauguleFaheem A. SheikhWook-Jin ChungHern Kim . Synthesis, characterization, and application of silica supported ionic liquid as catalyst for reductive amination of cyclohexanone with formic acid and triethyl amine as hydrogen source. Chinese Journal of Catalysis, 2015, 36(8): 1365-1371. doi: 10.1016/S1872-2067(15)60848-8

    18. [18]

      Shi Liang HUANG Yi LUO Zhi Shu HUANG Xian Zhang BU Pei Qing LIU Lin MA Yue Ming LI Albert S. C. CHAN Lian Quan GU . The Mechanism on Cyclization, Debenzylation and Oxidation of 1-[1-(Benzyloxy)-3-methylnaphthalen-4-yloxy]propan-2-one. Chinese Chemical Letters, 2006, 17(6): 769-772.

    19. [19]

      un Ran CHENG Jia WEN Rut Lian SHAO Huan Yan CAO Run Qiu HUANG . Synthesis of Asymmetric 4H-1, 3, 2-Benzodioxaphosphorin 2-Sulfides from Intramolecular Cyclization Reaction. Chinese Chemical Letters, 1999, 10(9): 731-732.

    20. [20]

      HAN Yi-DeZHANG JingLIU Ning-NingWANG YuZHANG Xia . Synthesis and Crystal Structure of a New Chargeassisted Hydrogen-bonded Host Framework [Co(en)3]2[Zr2(C2O4)7]·2H2O. Chinese Journal of Structural Chemistry, 2015, 34(3): 435-440. doi: 10.14102/j.cnki.0254-5861.2011-0529

Metrics
  • PDF Downloads(3)
  • Abstract views(58)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return