Thermal benzene activation by 3d transition metal (Sc-Cu) oxide cations
-
* Corresponding author.
E-mail address: majiabi@bit.edu.cn (J. Ma).
Citation:
Cui Jiatong, Zhao Yue, Wang Ming, Wang Shanshan, Ma Jiabi. Thermal benzene activation by 3d transition metal (Sc-Cu) oxide cations[J]. Chinese Chemical Letters,
;2020, 31(3): 779-782.
doi:
10.1016/j.cclet.2019.05.015
J.G. Calvert, R. Atkinson, K.H. Becker, et al., The Mechanisms of Atmospheric Oxidation of Aromatic Hydrocarbons, Oxford University Press, New York, 2002.
C.R. Usher, A.E. Michel, V.H. Grassian, Chem. Rev. 103(2003) 4883-4939.
doi: 10.1021/cr020657y
T. Kameda, E. Azumi, A. Fukushima, et al., Sci. Rep.-UK 6(2016) 1-10.
doi: 10.1038/s41598-016-0001-8
J.L. Jimenez, M.R. Canagaratna, N.M. Donahue, et al., Science 326(2009) 1525-1529.
doi: 10.1126/science.1180353
E. Borrás, L.A. Tortajada-Genaro, Atmos. Environ. 47(2012) 154-163.
doi: 10.1016/j.atmosenv.2011.11.020
G. Wang, R. Zhang, M.E. Gomez, et al., Proc. Natl. Acad. Sci. U. S. A. 48(2016) 13630-13635.
M. Kalberer, D. Paulsen, M. Sax, et al., Science 303(2004) 1659-1662.
doi: 10.1126/science.1092185
B. Zheng, Q. Zhang, Y. Zhang, et al., Atmos. Chem. Phys. 14(2015) 2031-2049.
J. Duan, J. Tan, Atmos. Environ. 74(2013) 93-101.
doi: 10.1016/j.atmosenv.2013.03.031
H.Z. Tian, C.Y. Zhu, J.J. Gao, et al., Atmos. Chem. Phys. 15(2015) 12107-12166.
doi: 10.5194/acpd-15-12107-2015
H.J. Tong, P.S.J. Lakey, A.M. Arangio, et al., Faraday Discuss. 200(2017) 251-270.
doi: 10.1039/C7FD00023E
H. Schwarz, Catal. Sci. Technol. 7(2017) 4302-4314.
doi: 10.1039/C6CY02658C
H. Schwarz, S. Shaik, J.L. Li, J. Am. Chem. Soc. 139(2017) 17201-17212.
doi: 10.1021/jacs.7b10139
S.M. Lang, T.M. Bernhardt, Phys. Chem. Chem. Phys. 14(2012) 9255-9269.
doi: 10.1039/c2cp40660h
X.L. Ding, X.N. Wu, Y.X. Zhao, et al., Acc. Chem. Res. 45(2012) 382-390.
doi: 10.1021/ar2001364
R.A.J. O'Hair, G.N. Khairallah, J. Cluster Sci. 15(2004) 331-363.
doi: 10.1023/B:JOCL.0000041199.40945.e3
J. Roithová, D. Schröder, Chem. Rev. 110(2010) 1170-1211.
doi: 10.1021/cr900183p
A.W. Castleman Jr., Catal. Lett. 141(2011) 1243-1253.
doi: 10.1007/s10562-011-0670-7
S. Yin, E.R. Bernstein, Int. J. Mass Spectrom. 321-322(2012) 49-65.
N. Dietl, M. Schlangen, H. Schwarz, Angew. Chem. Int. Ed. 51(2012) 5544-5555.
doi: 10.1002/anie.201108363
D. Caraiman, G.K. Koyanagi, D.K. Bohme, J. Phys. Chem. A 108(2004) 978-986.
doi: 10.1021/jp0307194
P. Cheng, A. Shayesteh, D.K. Bohme, Cheminform 40(2010) 241-246.
G.K. Koyanagi, D.K. Bohme, Int. J. Mass Spectrom. 227(2003) 563-575.
doi: 10.1016/S1387-3806(03)00091-5
X.P. Xing, Z.X. Tian, H.T. Liu, et al., Rapid Commun. Mass Spectrom. 17(2003) 1743-1748.
doi: 10.1002/rcm.1115
T. Hanmura, M. Ichihashi, T. Kondow, J. Phys. Chem. A 106(2002) 11465-11469.
doi: 10.1021/jp021275z
T. Kurikawa, H. Takeda, M. Hirano, et al., Organometallics 18(2012) 1430-1438.
D. Caraiman, D.K. Bohme, J. Phys. Chem. A 106(2002) 9705-9717.
doi: 10.1021/jp0208900
D.J. Trevor, R.L. Whetten, D.M. Cox, et al., J. Am. Chem. Soc. 107(1985) 518-519.
doi: 10.1021/ja00288a049
M.R. Zakin, D.M. Cox, R.O. Brickman, et al., J. Phys. Chem. 93(1989) 6823-6827.
doi: 10.1021/j100355a048
Y. Huang, B.S. Freiser, J. Am. Chem. Soc. 112(1990) 1682-1685.
doi: 10.1021/ja00161a004
X.P. Xing, H.T. Liu, Z.C. Tang, PhysChemComm 6(2003) 32-35.
doi: 10.1039/b302761a
C. Berg, M. Beyer, U. Achatz, et al., J. Chem. Phys. 108(1998) 5398-5403.
doi: 10.1063/1.475972
S. Roszak, D. Majumdara, K. Balasubramaniana, J. Phys. Chem. A 103(1999) 5801-5806.
doi: 10.1021/jp9907950
X.P. Xing, Z. Tian, H.T. Liu, et al., J. Phys. Chem. A 107(2003) 8484-8491.
H.T. Liu, S.T. Sun, X.P. Xing, et al., Rapid Commun. Mass Spectrom. 20(2006) 1899-1904.
doi: 10.1002/rcm.2524
M. Tombers, L. Barzen, G. Niednerschatteburg, J. Phys. Chem. A 117(2013) 1197.
Y.P. Ho, R.C. Dunbar, Int. J. Mass Spectrom. 182-183(1999) 175-184.
R.C. Dunbar, G.T. Uechi, B. Asamoto, J. Am. Chem. Soc. 116(1994) 2466-2470.
doi: 10.1021/ja00085a029
L. Barzen, M. Tombers, C. Merkert, et al., Int. J. Mass Spectrom. 330-332(2012) 271-276.
M.F. Ryan, D. Stoeckigt, H. Schwarz, J. Am. Chem. Soc. 116(1994) 9565-9570.
doi: 10.1021/ja00100a021
C. Heinemann, H.H. Cornehl, D. Schroder, et al., Inorg. Chem. 35(1996) 2463-2475.
doi: 10.1021/ic951322k
F. Dong, S. Heinbuch, Y. Xie, et al., J. Am. Chem. Soc. 131(2009) 1057-1066.
doi: 10.1021/ja8065946
K.A. Zemski, R.C. Bell, A.W. Castleman, Int. J. Mass Spectrom. 184(1999) 119-128.
doi: 10.1016/S1387-3806(98)14276-8
B. Butschke, H. Schwarz, Organometallics 30(2011) 1588-1598.
doi: 10.1021/om101138d
K. Judai, M. Hirano, H. Kawamata, et al., Chem. Phys. Lett. 270(1997) 23-30.
doi: 10.1016/S0009-2614(97)00336-9
G.S. Jackson, F.M. White, C.L. Hammill, et al., J. Am. Chem. Soc. 119(1997) 7567-7572.
doi: 10.1021/ja970218u
Z.Y. Li, Z. Yuan, X.N. Li, et al., J. Am. Chem. Soc. 136(2014) 14307-14313.
doi: 10.1021/ja508547z
G. Kummerlöwe, M.K. Beyer, Int. J. Mass Spectrom. 244(2005) 84-90.
doi: 10.1016/j.ijms.2005.03.012
T. Su, M.T. Bowers, J. Chem. Phys. 58(1973) 3027-3037.
doi: 10.1063/1.1679615
J.T. Cui, Y. Zhao, J.C. Hu, et al., J. Chem. Phys. 149(2018) 074308.
doi: 10.1063/1.5038175
S.M. Lang, D.M. Popolan, T.M. Bernhardt, Chem. Phys. Solid Surf. 12(2007) 53-90.
doi: 10.1016/S1571-0785(07)12002-2
M. Arenz, S. Gilb, U. Heiz, Chem. Phys. Solid Surf. 12(2007) 1-51.
doi: 10.1016/S1571-0785(07)12001-0
Y.X. Zhao, X.N. Wu, Z.C. Wang, et al., Chem. Commun. 46(2010) 1736-1738.
doi: 10.1039/b924603g
S. Detlef, S. Helmut, Helv. Chim. Acta 75(1992) 1281-1287.
doi: 10.1002/hlca.19920750429
H. Higashide, T. Oka, K. Kasatani, et al., Chem. Phys. Lett. 163(1989) 485-489.
doi: 10.1016/0009-2614(89)85173-5
N.S. Shuman, D.E. Hunton, A.A. Viggiano, Chem. Rev. 115(2015) 4542.
doi: 10.1021/cr5003479
Y.X. Zhao, X.N. Wu, J.B. Ma, et al., Phys. Chem. Chem. Phys. 13(2011) 1925-1938.
doi: 10.1039/c0cp01171a
X.N. Wu, B. Xu, J.H. Meng, et al., Int. J. Mass Spectrom. 310(2012) 57-64.
doi: 10.1016/j.ijms.2011.11.011
Y.R. Luo, Comprehensive Handbook of Chemical Bond Energies, CRC Press, Boca Raton, 2007.
J.T. Cui, C.X. Sun, Y. Zhao, et al., Phys. Chem. Chem. Phys. 21(2019) 1117-1122.
doi: 10.1039/C8CP06807K
D. Schröder, H. Schwarz, Angew. Chem. Int. Ed. 34(1995) 1973-1995.
doi: 10.1002/anie.199519731
R. Atkinson, J. Arey, Chem. Rev. 103(2003) 4605-4638.
doi: 10.1021/cr0206420
R. Atkinson, J. Phys. Chem. Ref. Data 26(1997) 215-290.
doi: 10.1063/1.556012
T. Seta, M. Nakajima, A. Miyoshi, J. Phys. Chem. A 110(2006) 5081-5090.
doi: 10.1021/jp0575456
X. Shen, Y. Zhao, Z. Chen, et al., Atmos. Environ. 68(2013) 297-314.
doi: 10.1016/j.atmosenv.2012.11.027
Yongyi Li , Jin Han , Xiangyu Wang , Zhenwei Wei . In-situ reaction monitoring and kinetics study of photochemical reactions by optical focusing inductive electrospray mass spectrometry. Chinese Chemical Letters, 2025, 36(9): 110708-. doi: 10.1016/j.cclet.2024.110708
Tian Feng , Yun-Ling Gao , Di Hu , Ke-Yu Yuan , Shu-Yi Gu , Yao-Hua Gu , Si-Yu Yu , Jun Xiong , Yu-Qi Feng , Jie Wang , Bi-Feng Yuan . Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(8): 109259-. doi: 10.1016/j.cclet.2023.109259
Cheng Guo , Xiaoxiao Zhang , Xiujuan Hong , Yiqiu Hu , Lingna Mao , Kezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867
Junmeng Luo , Qiongqiong Wan , Suming Chen . Chemistry-driven mass spectrometry for structural lipidomics at the C=C bond isomer level. Chinese Chemical Letters, 2025, 36(1): 109836-. doi: 10.1016/j.cclet.2024.109836
Keqiang Shi , Xiujuan Hong , Dongyan Xu , Tao Pan , Huiwen Wang , Hongru Feng , Cheng Guo , Yuanjiang Pan . Analysis of RNA modifications in peripheral white blood cells from breast cancer patients by mass spectrometry. Chinese Chemical Letters, 2025, 36(3): 110079-. doi: 10.1016/j.cclet.2024.110079
Rui Su , Xiaowei Fang , Peng Zeng , Yong Qian , Xuanzhu Li , Huiyu Xing , Jiamei Lin , Jiaquan Xu . Mass spectrometry for non-destructive detection of the average diameter of micro copper wires. Chinese Chemical Letters, 2025, 36(10): 110748-. doi: 10.1016/j.cclet.2024.110748
Qiongqiong Wan , Yanan Xiao , Guifang Feng , Xin Dong , Wenjing Nie , Ming Gao , Qingtao Meng , Suming Chen . Visible-light-activated aziridination reaction enables simultaneous resolving of C=C bond location and the sn-position isomers in lipids. Chinese Chemical Letters, 2024, 35(4): 108775-. doi: 10.1016/j.cclet.2023.108775
Yang Feng , Yang-Qing Tian , Yong-Qiang Zhao , Sheng-Jun Chen , Bi-Feng Yuan . Dynamic deformylation of 5-formylcytosine and decarboxylation of 5-carboxylcytosine during differentiation of mouse embryonic stem cells into mouse neurons. Chinese Chemical Letters, 2024, 35(11): 109656-. doi: 10.1016/j.cclet.2024.109656
Yao-Hua Gu , Yu Chen , Qing Li , Neng-Bin Xie , Xue Xing , Jun Xiong , Min Hu , Tian-Zhou Li , Ke-Yu Yuan , Yu Liu , Tang Tang , Fan He , Bi-Feng Yuan . Metabolome profiling by widely-targeted metabolomics and biomarker panel selection using machine-learning for patients in different stages of chronic kidney disease. Chinese Chemical Letters, 2024, 35(11): 109627-. doi: 10.1016/j.cclet.2024.109627
Yimin Guo , Yiting Luo , Shuwen Hua , Chuan-Fan Ding , Yinghua Yan . Application of magnetic nanomaterials in peptidomics: A review in the past decade. Chinese Chemical Letters, 2025, 36(6): 110070-. doi: 10.1016/j.cclet.2024.110070
Xiaoli Zhong , Liangsheng Chen , Hao Xu , Tianhang Jiang , Zhengyi Hua , Fancheng Tan , Xiaoya Mao , Ziquan Fan , Zhiwei Li , Jun Zeng , Shu-Hai Lin . Development of a comprehensive computational pipeline for cardiolipin atlas in an intermittent fasting model. Chinese Chemical Letters, 2025, 36(12): 111027-. doi: 10.1016/j.cclet.2025.111027
Shu-Yi Gu , Tian Feng , Fang-Yin Gang , Si-Yu Yu , Wan Chan , Zhao-Cheng Ma , Yao-Hua Gu , Bi-Feng Yuan . Persistent organic pollutant perfluorooctanoic acid induces alterations in epigenetic modifications of DNA and RNA. Chinese Chemical Letters, 2025, 36(12): 110957-. doi: 10.1016/j.cclet.2025.110957
Xia Xu , Guiqian Yang , Zhen Zheng , Cody J. Wenthur , Jinyu Li , Gongyu Li . The sheet-to-helix transition is a potential gas-phase unfolding pathway for a multidomain protein CRM197. Chinese Chemical Letters, 2025, 36(7): 110401-. doi: 10.1016/j.cclet.2024.110401
Caihong Mao , Yanfeng He , Xiaohan Wang , Yan Cai , Xiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362
Haiyan Lu , Jiayue Ye , Yiping Wei , Hua Zhang , Konstantin Chingin , Vladimir Frankevich , Huanwen Chen . Tracing molecular margins of lung cancer by internal extractive electrospray ionization mass spectrometry. Chinese Chemical Letters, 2025, 36(2): 110077-. doi: 10.1016/j.cclet.2024.110077
Lu Huang , Jiang Wang , Hong Jiang , Lanfang Chen , Huanwen Chen . On-line determination of selenium compounds in tea infusion by extractive electrospray ionization mass spectrometry combined with a heating reaction device. Chinese Chemical Letters, 2025, 36(1): 109896-. doi: 10.1016/j.cclet.2024.109896
Tong Liu , Youdong Xu , Yajie Jiao , Jinguo Zhao , Bin Fu , Xianyu Li , Hongjun Yang , Weijie Qin . A dual-crosslinking and thiol-yne "click reaction"-based tagging method for mouse liver RNA binding proteome enrichment and identification by mass spectrometry. Chinese Chemical Letters, 2026, 37(1): 111154-. doi: 10.1016/j.cclet.2025.111154
Xuefei Zhao , Xuhong Hu , Zhenhua Jia . 理论与计算化学在傅-克烷基化反应教学中的应用. University Chemistry, 2025, 40(8): 360-367. doi: 10.12461/PKU.DXHX202410008
Yu Deng , Yan Liu , Yonghui Deng , Jinsheng Cheng , Yidong Zou , Wei Luo . In situ sulfur-doped mesoporous tungsten oxides for gas sensing toward benzene series. Chinese Chemical Letters, 2024, 35(7): 108898-. doi: 10.1016/j.cclet.2023.108898
Xi Feng , Ding-Yi Hu , Zi-Jun Liang , Mu-Yang Zhou , Zhi-Shuo Wang , Wen-Yu Su , Rui-Biao Lin , Dong-Dong Zhou , Jie-Peng Zhang . A metal azolate framework with small aperture for highly efficient ternary benzene/cyclohexene/cyclohexane separation. Chinese Journal of Structural Chemistry, 2025, 44(3): 100540-100540. doi: 10.1016/j.cjsc.2025.100540