Citation: Zhang Xiaolong, Han Yifei, Liu Guangyao, Wang Feng. Macrocyclic versus acyclic preorganization in organoplatinum(Ⅱ)-based host-guest complexes[J]. Chinese Chemical Letters, ;2019, 30(11): 1927-1930. doi: 10.1016/j.cclet.2019.05.007 shu

Macrocyclic versus acyclic preorganization in organoplatinum(Ⅱ)-based host-guest complexes

    * Corresponding author.
    E-mail address: drfwang@ustc.edu.cn (F. Wang).
  • Received Date: 2 April 2019
    Revised Date: 17 April 2019
    Accepted Date: 18 April 2019
    Available Online: 7 November 2019

Figures(5)

  • Two host-guest systems have been constructed, by employing structurally similar terpyridine platinum (Ⅱ) macrocycle and molecular tweezer as the synthetic receptors. The macrocycle/guest complex displays low-energy emission signal, reinforced non-covalent binding affinity, and enhanced photosensitization capability than those of the molecular tweezer/guest one. The discrepancy between macrocyclic and acyclic preorganization modes originates from the different numbers of Pt(Ⅱ)…Pt(Ⅱ) metal-metal bonds in host-guest complexation structures.
  • 加载中
    1. [1]

      D.J. Cram, Angew. Chem. Int. Ed. 25(1986) 1039-1057.  doi: 10.1002/anie.198610393

    2. [2]

      (a) J.M. Lehn, Science 260 (1993) 1762-1763;
      (b) F. Wang, J. Zhang, X. Ding, et al., Angew. Chem. Int. Ed. 49 (2010) 1090-1094;
      (c) M. Xue, Y. Yang, X. Chi, X. Yan, F. Huang, Chem. Rev. 115 (2015) 7398-7501;
      (d) Z. Liu, S.K.M. Nalluri, J.F. Stoddart, Chem. Soc. Rev. 46 (2017) 2459-2478;
      (e) K. Kotturi, E. Masson, Chem. -Eur. J. 24 (2018) 8670-8678;
      (f) S. Kuang, Z. Hu, H. Zhang, et al., Chem. Commun. 54 (2018) 2169-2172.

    3. [3]

      (a) C.W. Chen, H.W. Whitlock, J. Am. Chem. Soc. 100 (1978) 4921-4922;
      (b) S.C. Zimmerman, W. Wu, J. Am. Chem. Soc. 111 (1989) 8054-8055;
      (c) M. Hardouin-Lerouge, P. Hudhomme, M. Salle, Chem. Soc. Rev. 40 (2011) 30-43;
      (d) C. Shao, M. Stolte, F. Wuerthner, Angew. Chem. Int. Ed. 52 (2013) 7482-7486;
      (e) S. Ibáñez, M. Poyatos, E. Peris, Angew. Chem. Int. Ed. 56 (2017) 9786-9790;
      (f) Y. Han, Y. Tian, Z. Li, F. Wang, Chem. Soc. Rev. 47 (2018) 5165-5176;
      (g) S. Ibáñez, M. Poyatos, E. Peris, Angew. Chem. Int. Ed. 57 (2018) 16816-16820.

    4. [4]

      (a) J.D. Badjic, A. Nelson, S.J. Cantrill, W.B. Turnbull, J.F. Stoddart, Acc. Chem. Res. 38 (2005) 723-732;
      (b) C.A. Hunter, H.L. Anderson, Angew. Chem. Int. Ed. 48 (2009) 7488-7499;
      (c) L.K.S. von Krbek, C.A. Schalley, P. Thordarson, Chem. Soc. Rev. 46 (2017) 2622-2637.

    5. [5]

      (a) Y. Tanaka, K.M.C. Wong, V.W.W. Yam, Chem. Sci. 3 (2012) 1185-1191;
      (b) Y. Tanaka, K.M.C. Wong, V.W.W. Yam, Angew. Chem. Int. Ed. 52 (2013) 14117-14120;
      (c) Y. Tanaka, K.M.C. Wong, V.W.W. Yam, Chem. -Eur. J. 19 (2013) 390-399;
      (d) A.K.W. Chan, W.H. Lam, Y. Tanaka, K.M.C. Wong, V.W.W. Yam, Proc. Natl. Acad. Sci. U. S. A. 112 (2015) 690-695;
      (e) F.K.W. Kong, A.K.W. Chan, M. Ng, K.H. Low, V.W.W. Yam, Angew. Chem. Int. Ed. 56 (2017) 15103-15107.

    6. [6]

      (a) Y.K. Tian, Y.G. Shi, Z.S. Yang, F. Wang, Angew. Chem. Int. Ed. 53 (2014) 6090-6094;
      (b) Y.K. Tian, Y.F. Yang, Z.S. Yang, F. Wang, Macromolecules 49 (2016) 6455-6461;
      (c) Z. Gao, Y. Han, J. Chen, X. Wang, F. Wang, Chem. -Asian. J. 11 (2016) 1775-1779;
      (d) X. Lv, Y. Han, Z. Yang, et al., Tetrahedron Lett. 57 (2016) 1971-1975;
      (e) Z. Li, Y. Han, F. Jin, et al., Daltron Trans. 45 (2016) 17290-17295;
      (f) Z. Li, Y. Han, Z. Gao, F. Wang, ACS Catal. 7 (2017) 4676-4681;
      (g) T. Fu, Z. Li, Z. Zhang, X. Zhang, F. Wang, Macromolecules 50 (2017) 7517-7525;
      (h) Z.G.Y. Han, S. Chen, et al., ACS Macro Lett. 6 (2017) 541-545;
      (i) Z. Li, Y. Han, Z. Gao, T. Fu, F. Wang, Mater. Chem. Front. 2 (2018) 76-80;
      (j) X. Zhang, L. Ao, Y. Han, Z. Gao, F. Wang, Chem. Commun. 54 (2018) 1754-1757;
      (k) Z. Gao, Y. Han, Z. Gao, F. Wang, Acc. Chem. Res. 51 (2018) 2719-2729.

    7. [7]

      (a) A.J. Goshe, I.M. Steele, B. Bosnich, J. Am. Chem. Soc. 125 (2003) 4444-4450;
      (b) J.D. Crowley, I.M. Steele, B. Bosnich, Inorg. Chem. 44 (2005) 2989-2991;
      (c) Y. Yamaki, T. Nakamura, S. Suzuki, et al., Eur. J. Org. Chem. (2016) 1678-1683.

    8. [8]

      (a) D. Canevet, M. Gallego, H. Isla, et al., J. Am. Chem. Soc. 133 (2011) 3184-3190;
      (b) J.M. McGrath, M.D. Pluth, J. Org. Chem. 79 (2014) 711-719.

    9. [9]

      To reduce the computational costs, the peripheral 4-butoxyphenyl groups on both 1 and 2 are removed during DFT calculation processes.

    10. [10]

      W. Lu, M.C. Chan, K.K. Cheung, C.M. Che, Organometallics 20(2001) 2477-2486.  doi: 10.1021/om0009839

    11. [11]

      (a) D. Zhang, L.Z. Wu, L. Zhou, et al., J. Am. Chem. Soc. 126 (2004) 3440-3441;
      (b) Q.Y. Meng, T. Lei, L.M. Zhao, et al., Org. Lett. 16 (2014) 5968-5971.

  • 加载中
    1. [1]

      Jie YangXin-Yue LouDihua DaiJingwei ShiYing-Wei Yang . Desymmetrized pillar[8]arenes: High-yield synthesis, functionalization, and host-guest chemistry. Chinese Chemical Letters, 2025, 36(1): 109818-. doi: 10.1016/j.cclet.2024.109818

    2. [2]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    3. [3]

      Yan FanJiao TanCuijuan ZouXuliang HuXing FengXin-Long Ni . Unprecedented stepwise electron transfer and photocatalysis in supramolecular assembly derived hybrid single-layer two-dimensional nanosheets in water. Chinese Chemical Letters, 2025, 36(4): 110101-. doi: 10.1016/j.cclet.2024.110101

    4. [4]

      Zhen DaiLinzhi TanYeyu SuKerui ZhaoYushun TianYu LiuTao Liu . Site-specific incorporation of reduction-controlled guest amino acids into proteins for cucurbituril recognition. Chinese Chemical Letters, 2024, 35(5): 109121-. doi: 10.1016/j.cclet.2023.109121

    5. [5]

      Cheng-Da ZhaoHuan YaoShi-Yao LiFangfang DuLi-Li WangLiu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879

    6. [6]

      Zhimin SunXin-Hui GuoYue ZhaoQing-Yu MengLi-Juan XingHe-Lue Sun . Dynamically switchable porphyrin-based molecular tweezer for on−off fullerene recognition. Chinese Chemical Letters, 2024, 35(6): 109162-. doi: 10.1016/j.cclet.2023.109162

    7. [7]

      Rui WangYang LiangJulius Rebek Jr.Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228

    8. [8]

      Chao ZhangAi-Feng LiuShihui LiFang-Yuan ChenJun-Tao ZhangFang-Xing ZengHui-Chuan FengPing WangWen-Chao GengChuan-Rui MaDong-Sheng Guo . A supramolecular formulation of icariin@sulfonatoazocalixarene for hypoxia-targeted osteoarthritis therapy. Chinese Chemical Letters, 2025, 36(1): 109752-. doi: 10.1016/j.cclet.2024.109752

    9. [9]

      Xuanyu WangZhao GaoWei Tian . Supramolecular confinement effect enabling light-harvesting system for photocatalytic α-oxyamination reaction. Chinese Chemical Letters, 2024, 35(11): 109757-. doi: 10.1016/j.cclet.2024.109757

    10. [10]

      Yu XiaYangming JiangXin-Long NiQiaochun WangDaoping Wang . A macrocycle-based "Russian doll": The smallest cucurbit[4]uril in cucurbit[10]uril. Chinese Chemical Letters, 2024, 35(12): 109782-. doi: 10.1016/j.cclet.2024.109782

    11. [11]

      Yi ZhouWei ZhangRong FuJiaxin DongYuxuan LiuZihang SongHan HanKang Cai . Self-assembly of two pairs of homochiral M2L4 coordination capsules with varied confined space using Tröger's base ligands. Chinese Chemical Letters, 2025, 36(2): 109865-. doi: 10.1016/j.cclet.2024.109865

    12. [12]

      Kang WeiJiayu LiWen ZhangBing YuanMing-De LiPingwu Du . A strained π-extended [10]cycloparaphenylene carbon nanoring. Chinese Chemical Letters, 2024, 35(5): 109055-. doi: 10.1016/j.cclet.2023.109055

    13. [13]

      Junying ZhangRuochen LiHaihua WangWenbing KangXing-Dong Xu . Photo-induced tunable luminescence from an aggregated amphiphilic ethylene-pyrene derivative in aqueous media. Chinese Chemical Letters, 2024, 35(6): 109216-. doi: 10.1016/j.cclet.2023.109216

    14. [14]

      Zixi ZouJingyuan WangYian SunQian WangDa-Hui Qu . Controlling molecular assembly on time scale: Time-dependent multicolor fluorescence for information encryption. Chinese Chemical Letters, 2024, 35(7): 108972-. doi: 10.1016/j.cclet.2023.108972

    15. [15]

      Zhengzhong ZhuShaojun HuZhi LiuLipeng ZhouChongbin TianQingfu Sun . A cationic radical lanthanide organic tetrahedron with remarkable coordination enhanced radical stability. Chinese Chemical Letters, 2025, 36(2): 109641-. doi: 10.1016/j.cclet.2024.109641

    16. [16]

      Jingyu ChenSha WuYuhao WangJiong Zhou . Near-perfect separation of alicyclic ketones and alicyclic alcohols by nonporous adaptive crystals of perethylated pillar[5]arene and pillar[6]arene. Chinese Chemical Letters, 2025, 36(4): 110102-. doi: 10.1016/j.cclet.2024.110102

    17. [17]

      Cheng HeRenlan HuangLingling WeiQiuhui HeJinbo LiuJiao ChenGe GaoCheng YangWanhua Wu . Uncovering the mask of sensitizers to switch on the TTA-UC emission by supramolecular host-guest complexation. Chinese Chemical Letters, 2025, 36(4): 110103-. doi: 10.1016/j.cclet.2024.110103

    18. [18]

      Bingbing ShiYuchun WangYi ZhouXing-Xing ZhaoYizhou LiNuoqian YanWen-Juan QuQi LinTai-Bao Wei . A supramolecular oligo[2]rotaxane constructed by orthogonal platinum(Ⅱ) metallacycle and pillar[5]arene-based host–guest interactions. Chinese Chemical Letters, 2024, 35(10): 109540-. doi: 10.1016/j.cclet.2024.109540

    19. [19]

      Xueru ZhaoAopu WangShimin WangZhijie SongLi MaLi Shao . Adsorption and visual detection of nitro explosives by pillar[n]arenes-based host–guest interactions. Chinese Chemical Letters, 2025, 36(4): 110205-. doi: 10.1016/j.cclet.2024.110205

    20. [20]

      Jianmei Guo Yupeng Zhao Lei Ma Yongtao Wang . Ultra-long room temperature phosphorescence, intrinsic mechanisms and application based on host-guest doping systems. Chinese Journal of Structural Chemistry, 2024, 43(9): 100335-100335. doi: 10.1016/j.cjsc.2024.100335

Metrics
  • PDF Downloads(4)
  • Abstract views(757)
  • HTML views(24)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return