Citation: Guo Chune, Guo Xiaomi, Chu Wubo, Jiang Nan, Li He. FTIR-ATR study for adsorption of trypsin in aqueous environment on bare and TiO2 coated ZnSe surfaces[J]. Chinese Chemical Letters, ;2020, 31(1): 150-154. doi: 10.1016/j.cclet.2019.04.067 shu

FTIR-ATR study for adsorption of trypsin in aqueous environment on bare and TiO2 coated ZnSe surfaces






  • Received Date: 27 March 2019
    Accepted Date: 26 April 2019
    Available Online: 22 January 2020

Figures(4)

  • Undesired adsorption of proteins brings big troubles to marine structures. The settled proteins change the physical and chemical properties of the surfaces, which allow marine fouling organisms to settle down on the structures. Therefore, to understand the adsorption mechanism of proteins is very helpful to find an environment-friendly solution against biofouling. Many approaches have been developed to study protein adsorption, but most of them are insufficient to give the chemical interaction information between proteins and surfaces. Fourier transform infrared spectroscopy with attenuated total reflection (FTIR-ATR) is an efficient, fast and non-destructive method for in situ surface measurement, which greatly minimizes the interference of water to infrared spectra, because of the very small depth of penetration of the evanescent wave. In this paper, an in situ FTIR-ATR technology was used to investigate the adsorption process of trypsin on a bare ZnSe surface and on a TiO2 coated ZnSe surface, and the effect of calcium cation strength and ultraviolet light irradiation on the secondary structure of trypsin were also evaluated. FTIR spectra of trypsin showed that Amide Ⅰ band red shift and Amide Ⅱ band blue shift in aqueous environment on both surfaces compared with the dry trypsin powder, and the addition of calcium cations further changed the Amide bands position, which indicated that the change of the secondary structure could be interfered by the environment. The hydrogen bond formation between water and trypsin, the interaction between surface and trypsin, the interaction between hydrated calcium cations and trypsin, are major factors to change the secondary structure of trypsin, and UV light irradiation also showed its influence for the secondary structure.
  • 加载中
    1. [1]

      P. Zhang, L. Lin, D. Zang, X. Guo, M. Liu, Small 13(2017) 1-9.

    2. [2]

      C.M. Kirschner, A.B. Brennan, Annu. Rev. Mater. Res. 42(2012) 211-229.  doi: 10.1146/annurev-matsci-070511-155012

    3. [3]

      G. Nurioglu, A.C.C. Esteves, G. de With, J. Mater. Chem. B 3(2015) 6547-6570.  doi: 10.1039/C5TB00232J

    4. [4]

      P. Lee, P.B. Messersmith, J.N. Israelachvili, J.H. Waite, Annu. Rev. Mater. Res. 41(2011) 99-132.  doi: 10.1146/annurev-matsci-062910-100429

    5. [5]

      H. Lee, S.M. Dellatore, W.M. Miller, P.B. Messersmith, Science 318(2007) 426-430.  doi: 10.1126/science.1147241

    6. [6]

      M.M. Apetri, N.C. Maiti, M.G. Zagorski, et al., J. Mol. Biol. 355(2006) 63-71.  doi: 10.1016/j.jmb.2005.10.071

    7. [7]

      J. Luo, Z.W. Wang, F. Wang, et al., RSC. Adv. 4(2014) 48963-48966.  doi: 10.1039/C4RA06171C

    8. [8]

      J.D.S. Goulden, M.E. Sharpe, J. Gen. Microbiol. 19(1958) 76-86.  doi: 10.1099/00221287-19-1-76

    9. [9]

      S.E. Glassford, B. Byrne, S.G. Kazarian, Biochim. Biophys. Acta 1834(2013) 2849-2858.  doi: 10.1016/j.bbapap.2013.07.015

    10. [10]

      S. Weng, Y. Xu, Fourier Transform Infrared Spectroscopy, Chemical Industry Press, Beijing, 2016.

    11. [11]

      H. Li, L.D. Doucette, D. Bousfield, C.P. Tripp, Anal. Chem. 82(2010) 5053-5059.  doi: 10.1021/ac902984s

    12. [12]

      H. Li, C.P. Tripp, Appl. Spectrosc. 62(2008) 963-967.  doi: 10.1366/000370208785793317

    13. [13]

      R.Q. Chen, C.E. Guo, W.B. Chu, N. Jiang, H. Li, Chin. Chem. Lett. 30(2019) 115-119.  doi: 10.1016/j.cclet.2018.07.019

    14. [14]

      A. Barth, Biochim. Biophys. Acta 1767(2007) 1073-1101.  doi: 10.1016/j.bbabio.2007.06.004

    15. [15]

      J. Kong, S. Yu, Acta Biochem. Biophys. Sin. 39(2007) 549-559.  doi: 10.1111/j.1745-7270.2007.00320.x

    16. [16]

      H. Yang, S. Yang, J. Kong, A. Dong, S. Yu, Nat. Protoc. 10(2015) 382-396.  doi: 10.1038/nprot.2015.024

    17. [17]

      J. Zhang, X. Zhang, F. Zhang, S. Yu, Anal. Bioanal. Chem. 409(2017) 4459-4465.  doi: 10.1007/s00216-017-0390-y

    18. [18]

      M. Byler, H. Susi, Appl. Spectrosc. 39(1985) 282-287.  doi: 10.1366/0003702854248917

    19. [19]

      L.D. Doucette, H. Li, B.J. Ninness, C.P. Tripp, Int. J. High Speed Electron. Syst.17(2007) 729-737.  doi: 10.1142/S012915640700493X

    20. [20]

      P. Wang, Y.Y. Wu, L.H. Li, X.Q. Ying, S.Q. Diao, Biotech. Bull. (2011) 42-47.

    21. [21]

      N. Wang, Studyonthe Crustacean Trypsin Gene, Dissertation, Ocean University of China, 2004, pp. 8-16.

    22. [22]

      A. Bouhekka, T. Bürgi, Appl. Surf. Sci. 261(2012) 369-374.  doi: 10.1016/j.apsusc.2012.08.017

    23. [23]

      P.I. Haris, D.C. Lee, D. Chapman, Biochim. Biophys. Acta 874(1986) 255-265.  doi: 10.1016/0167-4838(86)90024-5

    24. [24]

      A. Dong, P. Huang, W.S. Caughey, Biochemistry 29(1990) 3303-3308.  doi: 10.1021/bi00465a022

    25. [25]

      J. Zhao, J. Wang, J. Phys. Chem. B 120(2016) 9590-9598.  doi: 10.1021/acs.jpcb.6b05889

    26. [26]

      W.J. Bao, Z.D. Yan, M. Wang, et al., Chem. Commun. 50(2014) 7787-7789.  doi: 10.1039/c4cc01920b

    27. [27]

      B. Zheng, X. Yang, J. Li, et al., Anal. Chem. 90(2018) 10786-10794.  doi: 10.1021/acs.analchem.8b01715

    28. [28]

      A. Bouhekka, T. Bürgi, Acta Chim. Slov. 59(2012) 841-847.  doi: 10.2298/JSC121116147P

    29. [29]

      H. Yamamoto, T. Demura, K. Sekine, et al., J. Vis. Exp. 104(2015) 1-6.

    30. [30]

      F. Iwasa, N. Hori, T. Ueno, et al., Biomaterials 31(2010) 2717-2727.  doi: 10.1016/j.biomaterials.2009.12.024

    31. [31]

      I. Dolamic, T. Bürgi, J. Phys. Chem. C 115(2011) 2228-2234.  doi: 10.1021/jp1102753

  • 加载中
    1. [1]

      Chen RongqiaoGuo ChuneChu WuboJiang NanLi He . ATR-FTIR study of Bacillus sp. and Escherichia coli settlements on the bare and Al2O3 coated ZnSe internal reflection element. Chinese Chemical Letters, 2019, 30(1): 115-119. doi: 10.1016/j.cclet.2018.07.019

    2. [2]

      Yong ShenZhibo LiHarm-Anton Klok . Polypeptide Brushes Grown via Surface-initiated Ring-opening Polymerization of α-Amino Acid N-Carboxyanhydrides. Chinese Journal of Polymer Science, 2015, 33(7): 931-946. doi: 10.1007/s10118-015-1654-7

    3. [3]

      Dan-Ting TanXu ShaoShu-Feng PangYun-Hong Zhang . The effect of CTAB on Na2SO4 nucleation in mixed Na2SO4/CTAB aerosols by FTIR-ATR technology. Chinese Chemical Letters, 2016, 27(7): 1073-1076. doi: 10.1016/j.cclet.2016.02.019

    4. [4]

      Guo ChuneGuo XiaomiChu WuboJiang NanLi He . Spectroscopic study of conformation changes of bovine serum albumin in aqueous environment. Chinese Chemical Letters, 2019, 30(6): 1302-1306. doi: 10.1016/j.cclet.2019.02.023

    5. [5]

      ZHANG Yu-QinZHANG You-YuYE MinTAN PingZHAO Meng-JiaoYAO Shou-Zhuo . Interaction of L-Cysteine-capped-ZnS Nanoparticles with Bovine Hemoglobin by using UV-Vis, Fluorenscence and FTIR Spectroscopy. Chinese Journal of Applied Chemistry, 2008, 25(9): 1011-1016.

    6. [6]

      YANG QinLIU Mei-LingZHANG You-YuXIE Qing-JiYAO Shou-Zhuo . Bovine Serum Albumin Adsorption on Hydroxyapatite and TiO2 Investigated by Electrochemical Quartz Crystal Impedance and FTIR-ATR Spectroscopy. Chinese Journal of Applied Chemistry, 2007, 24(2): 128-133.

    7. [7]

      You Qi TANG Gen Pei LI Zhong Guo CHEN Jie ZENG Tien Chin TSAO Guang Da LIN Rong Guang ZHANG Zheng Wu CHI . CRYSTAL STRUCTURE OF THE COMPLEX OF MUNG BEAN TRYPSIN INHIBITOR LYSINE ACTIVE FRAGMENT WITH BOVINE TRYPSIN AT 1.8 ÅRESOLUTION. Chinese Chemical Letters, 1990, 1(1): 61-64.

    8. [8]

      CHEN Zhan . Molecular Structures of Buried Polymer Interfaces and Biological Interfaces Detected by Sum Frequency Generation Vibrational Spectroscopy. Acta Physico-Chimica Sinica, 2012, 28(03): 504-521. doi: 10.3866/PKU.WHXB201201091

    9. [9]

      LI Qian FENG YU TAN Min-Jia ZHAI Lin-Hui . Evaluation of Endoproteinase Lys-C/Trypsin Sequential Digestion Used in Proteomics Sample Preparation. Chinese Journal of Analytical Chemistry, 2017, 45(3): 316-321. doi: 10.11895/j.issn.0253-3820.160801

    10. [10]

      CAO JianCAO Zan-XiaZHAO Li-LingWANG Ji-Hua . Effect of α-Synuclein (1-17) Peptide for Cu2+-Bound and Metal-Free Forms by Molecular Dynamics Simulations. Acta Physico-Chimica Sinica, 2012, 28(02): 479-488. doi: 10.3866/PKU.WHXB201111231

    11. [11]

      Dun-Wan ZhuZhuo ChenKong-Yin ZhaoBo-Hong KanLan-Xia LiuXia DongHai WangaChao ZhangXi-Gang LengLin-Hua Zhang . Polypropylene non-woven supported fibronectin molecular imprinted calcium alginate/polyacrylamide hydrogel film for cell adhesion. Chinese Chemical Letters, 2015, 26(6): 807-810. doi: 10.1016/j.cclet.2015.04.033

    12. [12]

      Wei Hua ZHOU Yu Fen ZHAO . INTERMOLECULAR PHOSPHORYL GROUP TRANSFER FROM N-(O,O-DIISOPROPYL) PHOSPHORYL ASPARAGINE TO TRYPSIN. Chinese Chemical Letters, 1996, 7(7): 615-616.

    13. [13]

      Bin SuYong-sheng ZhaoFeng ChenQiang Fu . Effect of Microdomain Structure on the Mechanical Behavior of Binary Blends. Chinese Journal of Polymer Science, 2015, 33(7): 964-975. doi: 10.1007/s10118-015-1649-4

    14. [14]

      Andrew O. Odeh . Qualitative and quantitative ATR-FTIR analysis and its application to coal char of different ranks. Journal of Fuel Chemistry and Technology, 2015, 43(2): 129-137.

    15. [15]

      Bin YANG Hou Li JIANG Zhen Kai DING Qi Kai ZHANG . Secondary Structure in Solution of an Analog of Salmon Calcitonin:[Val1, Ala7]sCT. Chinese Chemical Letters, 1999, 10(7): 555-558.

    16. [16]

      HU BiaoYU DiHUANG KaiYU Shu-Juan . Metal-ion Interactions with Sugars: Crystal Structure of Bis(4-dehydro-L-arabinose) Calcium Methanol Bishydrate. Chinese Journal of Structural Chemistry, 2015, 34(5): 764-770. doi: 10.14102/j.cnki.0254-5861.2011-0517

    17. [17]

      GE Dong-LaiFAN Ying-JuYIN LongSUN Zhong-Xi . Determination of the Adsorption of Xanthate on Mesoporous CuAl2O4 Using a Continuous Online In situ ATR-FTIR Technology. Acta Physico-Chimica Sinica, 2013, 29(02): 371-376. doi: 10.3866/PKU.WHXB201211146

    18. [18]

      SHEN QiFAN Ying-JuYIN LongSUN Zhong-Xi . Two-Dimensional Continuous Online In situ ATR-FTIR Spectroscopic Investigation of Adsorption of Butyl Xanthate on CuO Surfaces. Acta Physico-Chimica Sinica, 2014, 30(2): 359-364. doi: 10.3866/PKU.WHXB201312041

    19. [19]

      Qian-Tao ShiWei Yan . Adsorption of arsenate on lanthanum-impregnated activated alumina: In situ ATR-FTIR and two-dimensional correlation analysis study. Chinese Chemical Letters, 2015, 26(2): 200-204. doi: 10.1016/j.cclet.2014.12.009

    20. [20]

      Qi ShenYing-Ju FanWei-Min ZhangBo-Li ZhuRu WangZhong-Xi Sun . Two-dimensional correlation analysis of continuous online in situ ATR-FTIR on the adsorption of butyl xanthate at the surface of a-PbO. Chinese Chemical Letters, 2015, 26(2): 193-196. doi: 10.1016/j.cclet.2014.07.003

Metrics
  • PDF Downloads(1)
  • Abstract views(18)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return