Citation: Liu Guo-Kai, Li Xin, Qin Wen-Bing, Lin Wei-Feng, Lin Li-Ting, Chen Jia-Yi, Liu Jian-Jian. Selective O-difluoromethylation of 1, 3-diones using S-(difluoromethyl) sulfonium salt[J]. Chinese Chemical Letters, ;2019, 30(8): 1515-1518. doi: 10.1016/j.cclet.2019.03.036 shu

Selective O-difluoromethylation of 1, 3-diones using S-(difluoromethyl) sulfonium salt

    * Corresponding author.
    E-mail address: gkliu@szu.edu.cn (G.-K. Liu)
  • Received Date: 22 February 2019
    Revised Date: 15 March 2019
    Accepted Date: 18 March 2019
    Available Online: 23 August 2019

Figures(4)

  • A facile and highly efficient approach for selective O-difluoromethylation of 1, 3-diones by recently developed bench-stable S-(difluoromethyl)sulfonium salt was described. And a broad range of difluoromthyl enol ethers were readily accessed in good to excellent yields under mild reaction conditions. Mechanistic studies revealed that the O-difluoromethylation reaction proceeds mainly via a difluorocarbene pathway.
  • 加载中
    1. [1]

      (a) B.E. Smart, Chem. Rev. 96 (1996) 1555-1556;
      (b) N. Chauret, D. Guay, C. Li, et al., Bioorg. Med. Chem. Lett. 12 (2002) 2149-2152;
      (c) T. Ohmine, T. Katsube, Y. Tsuzaki, et al., Bioorg. Med. Chem. Lett. 12 (2002) 739-742;
      (d) P. Jeschke, E. Baston, F.R. Leroux, Mini-Rev. Med. Chem. 7 (2007) 1027-1034 and references therein;
      (e) D. McKerrecher, K.G. Pike, M.J. Waring, PCT Int. Appl. WO (2007) 2007007042A1;
      (f) W.K. Hagmann, J. Med. Chem. 51 (2008) 4359-4369;
      (g) T. Furuya, C. Kuttruff, T. Ritter, Curr. Opin. Drug Discovery Dev. 11 (2008) 803-819;
      (h) J. Wang, M. Sánchez-Roselló, J.L. Aceña, et al., Chem. Rev. 114 (2014) 2432-2506;
      (i) M. Bassetto, S. Ferla, F. Pertusati, Future Med. Chem. 7 (2015) 527-546.

    2. [2]

      (a) W.F. Goure, K.L. Leschinsky, S.J. Wratten, J.P. Chupp, J. Agric. Food Chem. 39 (1991) 981-986;
      (b) R.A. Pérez, C. Sánchez-Brunete, E. Miguel, J.L. Tadeo, J. Agric. Food Chem. 46 (1998) 1864-1869.

    3. [3]

      (a) P. Kirsch, B. Bremer, Angew. Chem. Int. Ed. 39 (2000) 4216-4235;
      (b) T. Tasaka, S. Takenaka, K. Kabu, Y. Morita, H. Okamoto, Ferroelectronics 276 (2002) 83-87;
      (c) O.V. Boltalina, T. Nakajima, New Fluorinated Carbons: Fundamentals and Applications, Elsevier, Amsterdam, 2016.

    4. [4]

      (a) J.A. Erickson, J.I. McLoughlin, J. Org. Chem. 60 (1995) 1626-1631;
      (b) Y. Zafrani, D. Yeffet, G. Sod-Moriah, et al., J. Med. Chem. 60 (2017) 797-804.

    5. [5]

      (a) W.A. Simon, C. Büdingen, S. Fahr, B. Kinder, M. Koske, Biochem. Pharmacol. 42 (1991) 347-355
      (b) B. Kohl, E. Sturm, G. Rainer, United States Patent, US 4758579 (2019).

    6. [6]

      (a) L. Marin, P. Colombo, M. Bebawy, P.M. Young, D. Traini, Expert Opin. Drug Delivery 8 (2011) 1205-1220;
      (b) M. Cazzola, S. Picciolo, M.G. Matera, Expert Opin. Pharmacother. 11 (2010) 441-449.

    7. [7]

      (a) D.Z. Li, S.V. O'Neil, D.M. Springer, B.M. Zegarelli, PCT Int. Appl (2019) WO2010124047A1;
      (b) L. Zhang, G. Balan, G. Barreiro, et al., J. Med. Chem. 57 (2014) 861-877;
      (c) J.B. Sperry, R.M. Farr, M. Levent, et al., Org. Process Res. Dev.16 (2012) 1854-1860.

    8. [8]

      (a) B.R. Langlois, J. Fluorine Chem. 41 (1988) 247-261;
      (b) C.S. Thomoson, W.R. Dolbier, J. Org. Chem. 78 (2013) 8904-8908;
      (c) I. Rico, C. Wakselman, Tetrahedron Lett. 22 (1981) 323-326;
      (d) Q.Y. Chen, S.W. Wu, J. Fluorine Chem. 44 (1989) 433-440;
      (e) L. Zhang, J. Zheng, J. Hu, J. Org. Chem. 71 (2006) 9845-9848;
      (f) J. Zheng, Y. Li, L. Zhang, et al., Chem. Commun. (2007) 5149-5151;
      (g) Y. Zafrani, G. Sod-Moriah, Y. Segall, Tetrahedron 65 (2009) 5278-5283;
      (h) J.B. Sperry, K. Sutherland, Org. Process Res. Dev. 15 (2011) 721-725;
      (i) F. Wang, W. Huang, J. Hu, Chin. J. Chem. 29 (2011) 2717-2721;
      (j) P.S. Fier, J.F. Hartwig, Angew. Chem. Int. Ed. 52 (2013) 2092-2095;
      (k) A. Polley, G. Bairy, P. Das, R. Jana, Adv. Synth. Catal. 360 (2018) 4161-4167;
      (l) L. Li, F. Wang, C. Ni, J. Hu, Angew. Chem. Int. Ed. 52 (2013) 12390-12394;
      (m) X.Y. Deng, J.H. Lin, J. Zheng, J.C. Xiao, Chem. Commun. 51 (2015) 8805-8808;
      (n) J. Mizukado, Y. Matsukawa, H.D. Quan, M. Tamura, A. Sekiya, J. Fluorine Chem. 127 (2006) 400-404;
      (o) Y. Hagooly, O. Cohen, S. Rozen, Tetrahedron Lett. 50 (2009) 392-394;
      (p) Q. Xie, C. Ni, R. Zhang, et al., Angew. Chem. Int. Ed. 56 (2017) 3206-3210.

    9. [9]

      G. Liu, X. Wang, X.H. Xu, et al., Org. Lett. 15(2013) 1044-1047.  doi: 10.1021/ol4000313

    10. [10]

      X. Lin, Z. Weng, Org. Biomol. Chem. 13(2015) 3432-3437.  doi: 10.1039/C5OB00020C

    11. [11]

      C.B. Yue, J.H. Lin, J. Cai, et al., RSC Adv. 6(2016) 35705-35708.  doi: 10.1039/C6RA06338A

    12. [12]

      C. Liu, X.Y. Deng, X.L. Zeng, et al., J. Fluorine Chem. 192(2016) 27-30.  doi: 10.1016/j.jfluchem.2016.10.011

    13. [13]

      (a) S.L. Lu, X. Li, W.B. Qin, et al., Org. Lett. 20 (2018) 6925-6929;
      (b) G.K. Liu, S.L. Lu, X. Li, W.B. Qin, PCT Int. Appl. CN (2018) 2018113547.

  • 加载中
    1. [1]

      Zhiwei ChenHeyun ShengXue LiMenghan ChenXin LiQiuling Song . Efficient capture of difluorocarbene by pyridinium 1,4-zwitterionic thiolates: A concise synthesis of difluoromethylene-containing 1,4-thiazine derivatives. Chinese Chemical Letters, 2024, 35(4): 108937-. doi: 10.1016/j.cclet.2023.108937

    2. [2]

      Ze-Yuan MaMei XiaoCheng-Kun LiAdedamola ShoberuJian-Ping ZouS-(1,3-Dioxoisoindolin-2-yl)O,O-diethyl phosphorothioate (SDDP): A practical electrophilic reagent for the phosphorothiolation of electron-rich compounds. Chinese Chemical Letters, 2024, 35(5): 109076-. doi: 10.1016/j.cclet.2023.109076

    3. [3]

      Zhirong YangShan WangMing JiangGengchen LiLong LiFangzhi PengZhihui Shao . One stone three birds: Ni-catalyzed asymmetric allenylic substitution of allenic ethers, hydroalkylation of 1,3-enynes and double alkylation of enynyl ethers. Chinese Chemical Letters, 2024, 35(8): 109518-. doi: 10.1016/j.cclet.2024.109518

    4. [4]

      Ke ZhangSheng ZuoPengyuan YouTong RuFen-Er Chen . Palladium-catalyzed stereoselective decarboxylative [4 + 2] cyclization of 2-methylidenetrimethylene carbonates with pyrrolidone-derived enones: Straightforward access to chiral tetrahydropyran-fused spiro-pyrrolidine-2,3-diones. Chinese Chemical Letters, 2024, 35(6): 109157-. doi: 10.1016/j.cclet.2023.109157

    5. [5]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    6. [6]

      Zhenkang AiHui ChenXuebin Liao . Nickel-catalyzed decarboxylative difluoromethylation and alkylation of alkenes. Chinese Chemical Letters, 2025, 36(3): 109954-. doi: 10.1016/j.cclet.2024.109954

    7. [7]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    8. [8]

      Entian CuiYulian LuZhaoxia LiZhilei ChenChengyan GeJizhou Jiang . Interfacial B-O bonding modulated S-scheme B-doped N-deficient C3N4/O-doped-C3N5 for efficient photocatalytic overall water splitting. Chinese Chemical Letters, 2025, 36(1): 110288-. doi: 10.1016/j.cclet.2024.110288

    9. [9]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    10. [10]

      Yadan Luo Hao Zheng Xin Li Fengmin Li Hua Tang Xilin She . 调节O,S共掺杂C3N4中的活性氧生成以促进光催化降解微塑料. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052

    11. [11]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    12. [12]

      Minjun YinYuhui LinManli ZhuangWei XiaoJie Wu . Photoredox-catalyzed synthesis of α,α-difluoromethyl-β-alkoxysulfones from sulfur dioxide. Chinese Chemical Letters, 2025, 36(3): 109926-. doi: 10.1016/j.cclet.2024.109926

    13. [13]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    14. [14]

      Shunyu WangYanan ZhuYang ZhaoWanli NieHong Meng . Steric effects and electronic manipulation of multiple donors on S0/S1 transition of Dn-A emitters. Chinese Chemical Letters, 2025, 36(4): 110555-. doi: 10.1016/j.cclet.2024.110555

    15. [15]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    16. [16]

      Mao-Fan LiMing‐Yu GuoDe-Xuan LiuXiao-Xian ChenWei-Jian XuWei-Xiong Zhang . Multi-stimuli responsive behaviors in a new chiral hybrid nitroprusside salt (R-3-hydroxypyrrolidinium)2[Fe(CN)5(NO)]. Chinese Chemical Letters, 2024, 35(12): 109507-. doi: 10.1016/j.cclet.2024.109507

    17. [17]

      Yulin MaoJingyu MaJiecheng JiYuliang WangWanhua WuCheng Yang . Crown aldoxime ethers: Their synthesis, structure, acid-catalyzed/photo-induced isomerization and adjustable guest binding. Chinese Chemical Letters, 2024, 35(11): 109927-. doi: 10.1016/j.cclet.2024.109927

    18. [18]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    19. [19]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    20. [20]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

Metrics
  • PDF Downloads(5)
  • Abstract views(689)
  • HTML views(32)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return