Layered MoS2@graphene functionalized with nitrogen-doped graphene quantum dots as an enhanced electrochemical hydrogen evolution catalyst
-
* Corresponding author.
E-mail address: zhouxb@nwnu.edu.cn (X. Zhou)
Citation:
Guo Tong, Wang Lina, Sun Sen, Wang Yan, Chen Xiaoling, Zhang Kangning, Zhang Dongxia, Xue Zhonghua, Zhou Xibin. Layered MoS2@graphene functionalized with nitrogen-doped graphene quantum dots as an enhanced electrochemical hydrogen evolution catalyst[J]. Chinese Chemical Letters,
;2019, 30(6): 1253-1260.
doi:
10.1016/j.cclet.2019.02.009
J.A. Turner, Science 305(2004) 972-974.
doi: 10.1126/science.1103197
J.K. Norskov, C.H. Christensen, Science 312(2006) 1322-1323.
doi: 10.1126/science.1127180
F.E. Osterloh, Chem. Soc. Rev. 42(2013) 2294-2320.
doi: 10.1039/C2CS35266D
J.X. Feng, H. Xu, Y.T. Dong, et al., Angew. Chem. Int. Ed. 56(2017) 2960-2964.
doi: 10.1002/anie.201611767
J.X. Feng, J.Q. Wu, Y.X. Tong, et al., J. Am. Chem. Soc. 140(2018) 610-617.
doi: 10.1021/jacs.7b08521
J.X. Feng, S.Y. Tong, Y.X. Tong, et al., J. Am. Chem. Soc. 140(2018) 5118-5126.
doi: 10.1021/jacs.7b12968
M.A. Abbas, J.H. Bang, Chem. Mater. 27(2015) 7218-7235.
doi: 10.1021/acs.chemmater.5b03331
M.S. Faber, S. Jin, Energy Environ. Sci. 7(2014) 3519-3542.
doi: 10.1039/C4EE01760A
N.P. Sweeny, C.S. Rohrer, O.W. Brown, J. Am. Chem. Soc. 80(1958) 799-800.
doi: 10.1021/ja01537a012
J. Wang, F. Xu, H. Jin, et al., Adv. Mater. 29(2017) 1605838.
doi: 10.1002/adma.v29.14
H. Vrubel, X. Hu, Angew. Chem. 124(2012) 12875-12878.
doi: 10.1002/ange.v124.51
W.F. Chen, J.T. Muckerman, E. Fujita, Chem. Commun. 49(2013) 8896-8909.
doi: 10.1039/c3cc44076a
Z. Chen, D. Higgins, A. Yu, et al., Energy Environ. Sci. 4(2011) 3167-3192.
doi: 10.1039/c0ee00558d
X. Zou, Y. Zhang, Chem. Soc. Rev. 44(2015) 5148-5180.
doi: 10.1039/C4CS00448E
J. Xie, H. Zhang, S. Li, et al., Adv. Mater. 25(2013) 5807-5813.
doi: 10.1002/adma.v25.40
A.B. Laursen, S. Kegnæs, S. Dahl, et al., Energy Environ. Sci. 5(2012) 5577-5591.
doi: 10.1039/c2ee02618j
L. Ma, Y. Hu, G. Zhu, et al., Chem. Mater. 28(2016) 5733-5742.
doi: 10.1021/acs.chemmater.6b01980
X. Xu, Y. Sun, W. Qiao, et al., Appl. Surf. Sci. 396(2017) 1520-1527.
doi: 10.1016/j.apsusc.2016.11.201
S. Reddy, R. Du, L. Kang, et al., Appl. Catal. B: Environ. 194(2016) 16-21.
doi: 10.1016/j.apcatb.2016.04.007
H. Zhu, M.L. Du, M. Zhang, et al., Chem. Commun. 50(2014) 015435-015438.
doi: 10.1039/C4CC06480A
B. Guo, K. Yu, H. Li, et al., ACS Appl. Mater. Interfaces 9(2017) 3653-3660.
doi: 10.1021/acsami.6b14035
Z.C. Xiang, Z. Zhang, X.J. Xu, et al., Carbon 98(2016) 84-89.
doi: 10.1016/j.carbon.2015.10.071
I.S. Amiinu, Z. Pu, X. Liu, et al., Adv. Func. Mater. 27(2017) 1702300.
doi: 10.1002/adfm.v27.44
D. He, Y. Xiong, J. Yang, et al., J. Mater. Chem. A 5(2017) 1930-1934.
doi: 10.1039/C5TA09232A
V.N. Patel, N. Tandon, R.K. Pandey, Procedia Technol. 14(2014) 312-319.
doi: 10.1016/j.protcy.2014.08.041
D.J. Li, U.N. Maiti, J. Lim, et al., Nano Lett. 14(2014) 1228-1233.
doi: 10.1021/nl404108a
K.J.Huang, L.Wang, Y.J.Liu, et al., Inter. J. Hydrogen Energy 38(2013) 14027-14034.
doi: 10.1016/j.ijhydene.2013.08.112
J. Zhang, L. Zhao, A. Liu, et al., Electrochim. Acta 182(2015) 652-658.
doi: 10.1016/j.electacta.2015.09.147
W. Zhou, K. Zhou, D. Hou, et al., ACS Appl. Mater. Interfaces 6(2014) 21534-21540.
doi: 10.1021/am506545g
L. Zhao, C. Hong, L. Lin, et al., Carbon 116(2017) 223-231.
doi: 10.1016/j.carbon.2017.02.010
J. Sun, L. Li, X. Zhang, et al., RSC Adv. 5(2015) 11925-11932.
doi: 10.1039/C4RA13857K
Q. Lian, Z. He, Q. He, et al., Anal. Chim. Acta 823(2014) 32-39.
doi: 10.1016/j.aca.2014.03.032
X. Zhou, Z. He, Q. Lian, et al., Sensor. Actuat. B-Chem. 193(2014) 198-204.
doi: 10.1016/j.snb.2013.11.085
Y. Duan, T. Zeng, T. Sun, et al., Nano 13(2018) 1830003.
doi: 10.1142/S1793292018300037
L.A.Ponomarenko, F.Schedin, M.I.Katsnelson, et al., Science 320(2008) 356-358.
doi: 10.1126/science.1154663
S. Zhu, Y. Song, J. Wang, et al., Nano Today 13(2017) 10-14.
doi: 10.1016/j.nantod.2016.12.006
W.S. Kuo, Y.T. Shao, K.S. Huang, et al., ACS Appl. Mater. Interfaces 10(2018) 14438-14446.
doi: 10.1021/acsami.8b01429
W.A. Saidi, J. Phys. Chem. Lett. 4(2013) 4160-4165.
doi: 10.1021/jz402090d
Q. Chen, Y. Hu, C. Hu, et al., Phys. Chem. Chem. Phys. 16(2014) 19307-19313.
doi: 10.1039/C4CP02761B
K. Lee, H. Lee, Y. Shin, et al., Nano Energy 26(2016) 746-754.
doi: 10.1016/j.nanoen.2016.06.030
R. Vinoth, I.M. Patil, A. Pandikumar, et al., ACS Omega 1(2016) 971-980.
doi: 10.1021/acsomega.6b00275
D. Qu, M. Zheng, J. Li, et al., Light-Sci. Appl. 4(2015) e364.
doi: 10.1038/lsa.2015.137
X. Zheng, J. Xu, K. Yan, et al., Chem. Mater. 26(2014) 2344-2353.
doi: 10.1021/cm500347r
L. Ma, J. Ye, W. Chen, et al., Nano Energy 10(2014) 144-152.
doi: 10.1016/j.nanoen.2014.09.006
S.Y. Tai, C.J. Liu, S.W. Chou, et al., J. Mater. Chem. 22(2012) 24753-24759.
doi: 10.1039/c2jm35447k
D. Kong, H. Wang, J.J. Cha, et al., Nano Lett. 13(2013) 1341-1347.
doi: 10.1021/nl400258t
K.K. Liu, W. Zhang, Y.H. Lee, et al., Nano Lett. 12(2012) 1538-1544.
doi: 10.1021/nl2043612
Y. Zhai, Y. Dou, D. Zhao, et al., Adv. Mater. 23(2011) 4828-4850.
doi: 10.1002/adma.201100984
A. Thomas, A. Fischer, F. Goettmann, et al., J. Mater. Chem. 18(2008) 4893-4908.
doi: 10.1039/b800274f
H. Zhu, M.L. Du, M. Zhang, et al., Chem. Commun. 50(2014) 15435-15438.
doi: 10.1039/C4CC06480A
J. Kibsgaard, Z. Chen, B.N. Reinecke, et al., Nat. Mater. 11(2012) 963-969.
doi: 10.1038/nmat3439
J.D. Benck, Z. Chen, L.Y. Kuritzky, et al., ACS Catal. 2(2012) 1916-1923.
doi: 10.1021/cs300451q
Z. Xing, Q. Liu, A.M. Asiri, et al., ACS Catal. 5(2014) 145-149.
Z. Huang, W. Luo, L. Ma, et al., Angew. Chem. 127(2015) 15396-15400.
doi: 10.1002/ange.201507529
J. Bonde, P.G. Moses, T.F. Jaramillo, et al., Faraday Discuss. 140(2009) 219-231.
doi: 10.1039/B803857K
M.A. Lukowski, A.S. Daniel, F. Meng, et al., J. Am. Chem. Soc. 135(2013) 10274-10277.
doi: 10.1021/ja404523s
Ke Wang , Jia Wu , Shuyi Zheng , Shibin Yin . NiCo Alloy Nanoparticles Anchored on Mesoporous Mo2N Nanosheets as Efficient Catalysts for 5-Hydroxymethylfurfural Electrooxidation and Hydrogen Generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100104-100104. doi: 10.1016/j.cjsc.2023.100104
Haibin Yang , Duowen Ma , Yang Li , Qinghe Zhao , Feng Pan , Shisheng Zheng , Zirui Lou . Mo doped Ru-based cluster to promote alkaline hydrogen evolution with ultra-low Ru loading. Chinese Journal of Structural Chemistry, 2023, 42(11): 100031-100031. doi: 10.1016/j.cjsc.2023.100031
Ziyang Yin , Lingbin Xie , Weinan Yin , Ting Zhi , Kang Chen , Junan Pan , Yingbo Zhang , Jingwen Li , Longlu Wang . Advanced development of grain boundaries in TMDs from fundamentals to hydrogen evolution application. Chinese Chemical Letters, 2024, 35(5): 108628-. doi: 10.1016/j.cclet.2023.108628
Ping Wang , Ting Wang , Ming Xu , Ze Gao , Hongyu Li , Bowen Li , Yuqi Wang , Chaoqun Qu , Ming Feng . Keplerate polyoxomolybdate nanoball mediated controllable preparation of metal-doped molybdenum disulfide for electrocatalytic hydrogen evolution in acidic and alkaline media. Chinese Chemical Letters, 2024, 35(7): 108930-. doi: 10.1016/j.cclet.2023.108930
Huyi Yu , Renshu Huang , Qian Liu , Xingfa Chen , Tianqi Yu , Haiquan Wang , Xincheng Liang , Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253
Caili Yang , Tao Long , Ruotong Li , Chunyang Wu , Yuan-Li Ding . Pseudocapacitance dominated Li3VO4 encapsulated in N-doped graphene via 2D nanospace confined synthesis for superior lithium ion capacitors. Chinese Chemical Letters, 2025, 36(2): 109675-. doi: 10.1016/j.cclet.2024.109675
Sanmei Wang , Yong Zhou , Hengxin Fang , Chunyang Nie , Chang Q Sun , Biao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476
Cheng Guo , Xiaoxiao Zhang , Xiujuan Hong , Yiqiu Hu , Lingna Mao , Kezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867
Sanmei Wang , Dengxin Yan , Wenhua Zhang , Liangbing Wang . Graphene-supported isolated platinum atoms and platinum dimers for CO2 hydrogenation: Catalytic activity and selectivity variations. Chinese Chemical Letters, 2025, 36(4): 110611-. doi: 10.1016/j.cclet.2024.110611
Wenjing Xiong , Yulin Xu , Fangzhou Zhao , Baokai Xia , Hongqiang Wang , Wei Liu , Sheng Chen , Yongzhi Zhang . Graphene architecture interpenetrated with mesoporous carbon nanosheets promotes fast and stable potassium storage. Chinese Chemical Letters, 2025, 36(4): 109738-. doi: 10.1016/j.cclet.2024.109738
Xiao Li , Wanqiang Yu , Yujie Wang , Ruiying Liu , Qingquan Yu , Riming Hu , Xuchuan Jiang , Qingsheng Gao , Hong Liu , Jiayuan Yu , Weijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166
Xiangyuan Zhao , Jinjin Wang , Jinzhao Kang , Xiaomei Wang , Hong Yu , Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159
Xinyu Hou , Xuelian Yu , Meng Liu , Hengxing Peng , Lijuan Wu , Libing Liao , Guocheng Lv . Ultrafast synthesis of Mo2N with highly dispersed Ru for efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2025, 36(4): 109845-. doi: 10.1016/j.cclet.2024.109845
Zhuo Li , Peng Yu , Di Shen , Xinxin Zhang , Zhijian Liang , Baoluo Wang , Lei Wang . Low-loading Pt anchored on molybdenum carbide-based polyhedral carbon skeleton for enhancing pH-universal hydrogen production. Chinese Chemical Letters, 2025, 36(4): 109713-. doi: 10.1016/j.cclet.2024.109713
Jinli Chen , Shouquan Feng , Tianqi Yu , Yongjin Zou , Huan Wen , Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168
Renshu Huang , Jinli Chen , Xingfa Chen , Tianqi Yu , Huyi Yu , Kaien Li , Bin Li , Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171
Xiaoli Deng , Xiangchao Lu , Yang Cao , Qianjin Chen . Electrochemical imaging uncovers the heterogeneity of HER activity by sulfur vacancies in molybdenum disulfide monolayer. Chinese Chemical Letters, 2025, 36(3): 110379-. doi: 10.1016/j.cclet.2024.110379
Rui Deng , Wenjie Jiang , Tianqi Yu , Jiali Lu , Boyao Feng , Panagiotis Tsiakaras , Shibin Yin . Cycad-leaf-like crystalline-amorphous heterostructures for efficient urea oxidation-assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(7): 100290-100290. doi: 10.1016/j.cjsc.2024.100290
Wenjie Jiang , Zhixiang Zhai , Xiaoyan Zhuo , Jia Wu , Boyao Feng , Tianqi Yu , Huan Wen , Shibin Yin . Revealing the reactant adsorption role of high-valence WO3 for boosting urea-assisted water splitting. Chinese Journal of Structural Chemistry, 2025, 44(3): 100519-100519. doi: 10.1016/j.cjsc.2025.100519
Yatian Deng , Dao Wang , Jinglan Cheng , Yunkun Zhao , Zongbao Li , Chunyan Zang , Jian Li , Lichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141