Nickel/cobalt based materials for supercapacitors
-
* Corresponding author.
E-mail address: sps_xuxj@ujn.edu.cn (X. Xu)
Citation:
Wang Chenggang, Sun Pengxiao, Qu Guangmeng, Yin Jiangmei, Xu Xijin. Nickel/cobalt based materials for supercapacitors[J]. Chinese Chemical Letters,
;2018, 29(12): 1731-1740.
doi:
10.1016/j.cclet.2018.12.005
P. Simon, Y. Gogotsi, B. Dunn, Science 343(2014) 1210-1211.
doi: 10.1126/science.1249625
C. Liao, Y. Wen, Z. Xia, et al., Adv. Energy Mater. 8(2018)1701621.
doi: 10.1002/aenm.v8.9
V. Augustyn, P. Simon, B. Dunn, Energy Environ. Sci. 7(2014) 1597-1614.
doi: 10.1039/c3ee44164d
P. Simon, Y. Gogotsi, Nat. Mater. (2010) 320-329.
M.A. Hannan, M.M. Hoque, A. Mohamed, A. Ayo, Renew. Sust. Energy Rev. 69(2017) 771-789.
doi: 10.1016/j.rser.2016.11.171
J.R. Miller, P. Simon, Science 321(2008) 651-652.
doi: 10.1126/science.1158736
X. Wu, Z. Han, X. Zheng, et al., Nano Energy 31(2017) 410-417.
doi: 10.1016/j.nanoen.2016.11.035
W. Lv, R. Xue, S. Chen, M. Jiang, Chin. Chem. Lett. 29(2018) 637-640.
doi: 10.1016/j.cclet.2017.11.035
W. Jiang, F. Hu, Q. Yan, Xiang Wu, Inorg. Chem. Front. 4(2017) 1642-1648.
doi: 10.1039/C7QI00391A
M.F. El-Kady, V. Strong, S. Dubin, R.B. Kaner, Science 335(2012) 1326-1330.
doi: 10.1126/science.1216744
Y. Shao, M.F. El-Kady, L.J. Wang, et al., Chem. Soc. Rev. 44(2015) 3639-3665.
doi: 10.1039/C4CS00316K
J. Liu, J. Jiang, C. Cheng, et al., Adv. Mater. 23(2011) 2076-2081.
doi: 10.1002/adma.v23.18
Y. Wang, Y. Song, Y. Xia, Chem. Soc. Rev. 45(2016) 5925-5950.
doi: 10.1039/C5CS00580A
W.J. Lu, S.Z. Huang, L. Miao, et al., Chin. Chem. Lett. 28(2017) 1324-1329.
doi: 10.1016/j.cclet.2017.04.007
T. Brousse, D. B'elanger, J.W. Long, J. Electrochem. Soc.162(2015) A5185-A5189.
doi: 10.1149/2.0201505jes
L.Y. Liu, X. Zhang, H.X. Li, et al., Chin. Chem. Lett. 28(2017) 206-212.
doi: 10.1016/j.cclet.2016.07.027
J. Yan, Z. Fan, W. Sun, et al., Adv. Funct. Mater. 22(2012) 2632-2641.
doi: 10.1002/adfm.201102839
B. Zakeri, S. Syri, Renew. Sust. Energ. Rev. 42(2015) 569-596.
doi: 10.1016/j.rser.2014.10.011
H. Helmholtz, Ann. Phys 165(1853) 353-377.
M. Gouy, J. Phys. Theor. Appl. 9(1910) 457-468.
doi: 10.1051/jphystap:019100090045700
O. Stern, Z. Elektrochem. Angew. Phys. Chem. 30(1924) 508-516.
H. I. Becker, Patent, US 2800616, 1957.
T. Pandolfo, V. Ruiz, S. Sivakkumar, J. Nerkar, Supercapacitors: Materials, Systems, and Applications, Wiley-VCH, 2013, pp. 69-109.
G. Wang, L. Zhang, J. Zhang, Chem. Soc. Rev. 41(2012) 797-828.
doi: 10.1039/C1CS15060J
L.L. Zhang, X.S. Zhao, Chem. Soc. Rev. 38(2009) 2520-2531.
doi: 10.1039/b813846j
X. Chen, R. Paul, L. Dai, Sci. Rev. 4(2017) 453-489.
Z.F. Tian, M.J. Xie, Y. Shen, Y.Z. Wang, X.F. Guo, Chin. Chem. Lett. 28(2017) 863-867.
doi: 10.1016/j.cclet.2016.12.004
M. Chen, Y. Yang, D. Chen, H. Wang, Chin. Chem. Lett. 29(2018) 564-570.
doi: 10.1016/j.cclet.2017.12.019
A. Ghosh, Y.H. Lee, ChemSusChem 5(2012) 480-499.
doi: 10.1002/cssc.v5.3
X. Li, Y. Chen, H. Huang, Y.W. Mai, L. Zhou, Energy Storage Mater. 5(2016) 58-92.
doi: 10.1016/j.ensm.2016.06.002
B.E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, Springer Science & Business Media, New York, 2013.
O. Barbieri, M. Hahn, A. Herzog, R. Kotz, Carbon 43(2005) 1303-1310.
doi: 10.1016/j.carbon.2005.01.001
J. Chmiola, G. Yushin, Y. Gogotsi, et al., Science 313(2006) 1760-1763.
doi: 10.1126/science.1132195
J. Chmiola, C. Largeot, P.L. Taberna, P. Simon, Y. Gogotsi, Angew. Chem. Int. Ed. 47(2008) 3392-3395.
D.T.L. Galhena, B.C. Bayer, S. Hofmann, G.A.J. Amaratunga, ACS Nano 10(2015) 747-754.
B.E. Conway, V. Birss, J. Wojtowicz, J. Power Sources 66(1997) 1-14.
doi: 10.1016/S0378-7753(96)02474-3
S. Zhang, N. Pan, Adv. Energy Mater. 5(2015) 1401401.
doi: 10.1002/aenm.201401401
B.E. Conway, W.G. Pell, J. Solid State Electrochem. 7(2003) 637-644.
doi: 10.1007/s10008-003-0395-7
T.Y. Kim, G. Jung, S. Yoo, K.S. Suh, R.S. Ruoff, ACS Nano 7(2013) 6899-6905.
doi: 10.1021/nn402077v
W. Liu, M. Zhu, J. Liu, X. Lia, J. Liu, Chin. Chem. Lett. (2018), doi:http://dx.doi.org/10.1016/j.cclet.2018.09.013.
doi: 10.1016/j.cclet.2018.09.013
F. Zhang, T. Zhang, X. Yang, et al., Energy Environ. Sci. 6(2013) 1623-1632.
doi: 10.1039/c3ee40509e
S. Ardizzone, G. Fregonara, S. Trasatti, Electrochim. Acta 35(1990) 263-267.
doi: 10.1016/0013-4686(90)85068-X
J. Li, Z. Tang, Z. Zhang, Chem. Mater. 17(2005) 5848-5855.
doi: 10.1021/cm0516199
G.W. Yang, C.L. Xu, H.L. Li, Chem. Commun. 48(2008) 6537-6539.
Y.M. Wang, D.D. Zhao, Y.Q. Zhao, C.L. Xu, H.L. Li, RSC Adv. 2(2012) 1074-1082.
doi: 10.1039/C1RA00613D
J. Ji, L.L. Zhang, H. Ji, et al., ACS Nano 7(2013) 6237-6243.
doi: 10.1021/nn4021955
C. Wang, E. Zhou, X. Deng, et al., Sci. Adv. Mater. 8(2016) 1298-1304.
doi: 10.1166/sam.2016.2725
S.I. Kim, S.W. Kim, K. Jung, J.B. Kim, J.H. Jang, Nano Energy 24(2016) 17-24.
doi: 10.1016/j.nanoen.2016.03.027
M. Yang, H. Cheng, Y. Gu, et al., Nano Res. 8(2015) 2744-2754.
doi: 10.1007/s12274-015-0781-3
H. Wang, H.S. Casalongue, Y. Liang, H. Dai, J. Am. Chem. Soc. 132(2010) 7472-7477.
doi: 10.1021/ja102267j
L. Ma, R. Liu, L. Liu, et al., J. Power Sources 335(2016) 76-83.
doi: 10.1016/j.jpowsour.2016.10.006
D.P. Dubal, G.S. Gund, C.D. Lokhande, R. Holze, ACS Appl. Mater. Interfaces 5(2013) 2446-2454.
doi: 10.1021/am3026486
R.R. Salunkhe, J. Lin, V. Malgras, et al., Nano Energy 11(2015) 211-218.
doi: 10.1016/j.nanoen.2014.09.030
S. Liu, S.C. Lee, U. Patil, et al., J. Mater. Chem. A 5(2017) 1043-1049.
doi: 10.1039/C6TA07842G
H. Chen, L.F. Hu, M. Chen, Y. Yan, L.-M. Wu, Adv. Funct. Mater. 24(2014) 934-942.
doi: 10.1002/adfm.v24.7
M.F. Warsi, I. Shakir, M. Shahid, et al., Electrochim. Acta 135(2014) 513-518.
doi: 10.1016/j.electacta.2014.05.020
D. Zha, H. Sun, Y. Fu, X. Ouyang, X. Wang, Electrochim. Acta 236(2017) 18-27.
doi: 10.1016/j.electacta.2017.03.108
F. Lai, Y.E. Miao, L. Zuo, et al., Small 12(2016) 3235-3244.
doi: 10.1002/smll.v12.24
T. Wang, S. Zhang, X. Yan, et al., ACS Appl. Mater. Interfaces 9(2017) 15510-15524.
doi: 10.1021/acsami.7b02987
U.M. Patil, M.S. Nam, J.S. Sohn, et al., J. Mater. Chem. A 2(2014) 19075-19083.
doi: 10.1039/C4TA03953J
F. Shi, L. Li, X. Wang, C. Gu, J. Tu, RSC Adv. 4(2014) 41910-41921.
doi: 10.1039/C4RA06136E
J. Yan, Q. Wang, T. Wei, Z. Fan, Adv. Energy Mater. 4(2014) 1300816.
doi: 10.1002/aenm.201300816
J.M. Choi, S. Im, Appl. Surf. Sci. 244(2005) 435-438.
doi: 10.1016/j.apsusc.2004.09.152
F. Cao, G.X. Pan, X.H. Xia, P.S. Tang, H.F. Chen, J. Power Sources 264(2014) 161-167.
doi: 10.1016/j.jpowsour.2014.04.103
G.S. Gund, D.P. Dubal, S.S. Shinde, C.D. Lokhande, ACS Appl. Mater. Interfaces 6(2014) 3176-3188.
doi: 10.1021/am404422g
S. Wu, K.S. Hui, K.N. Hui, K.H. Kim, J. Mater. Chem. A 4(2016) 9113-9123.
doi: 10.1039/C6TA02005D
L. Hu, L. Wu, M. Liao, X. Hu, X. Fang, Adv. Funct. Mater. 22(2012) 998-1004.
doi: 10.1002/adfm.v22.5
Y. Fujishiro, K. Hamamoto, O. Shino, S. Katayama, M. Awano, J. Mater. Sci. 15(2004) 769-773.
A. Trunov, Electrochim. Acta 105(2013) 506-513.
doi: 10.1016/j.electacta.2013.05.028
C. Wang, E. Zhou, W. He, et al., Nanomaterials 7(2017) 41.
doi: 10.3390/nano7020041
F. Luo, J. Li, Y. Lei, et al., Electrochim. Acta 135(2014) 495-502.
doi: 10.1016/j.electacta.2014.04.075
L. Ma, X. Shen, H. Zhou, et al., Chem. Eng. J. 262(2015) 980-988.
doi: 10.1016/j.cej.2014.10.079
D. Guo, Y. Luo, X. Yu, Q. Lin, T. Wang, Nano Energy 8(2014) 174-182.
doi: 10.1016/j.nanoen.2014.06.002
Z. Zhang, Y. Liu, Z. Huang, et al., Phys. Chem. Chem. Phys. 17(2015) 20795-20804.
doi: 10.1039/C5CP03331D
J. Pu, F. Cui, S. Chu, et al., ACS Sustainable Chem. Eng. 2(2013) 809-815.
S. Peng, L. Li, C. Li, et al., Chem. Commun. 49(2013) 10178-10180.
doi: 10.1039/c3cc46034g
L. Shen, L. Yu, H.B. Wu, et al., Nat. Commun. 6(2015) 6694.
doi: 10.1038/ncomms7694
W. Chen, C. Xia, H.N. Alshareef, ACS Nano 8(2014) 9531-9541.
doi: 10.1021/nn503814y
X. Wang, S. Zhao, L. Dong, et al., Energy Storage Mater. 6(2017) 180-187.
doi: 10.1016/j.ensm.2016.11.005
Y. Xiao, Y. Lei, B. Zheng, et al., RSC Adv. 5(2015) 21604-21613.
doi: 10.1039/C5RA00665A
J. Huang, J. Wei, Y. Xiao, et al., ACS Nano 12(2018) 3030-3041.
doi: 10.1021/acsnano.8b00901
P. Sun, C. Wang, W. He, P. Hou, X. Xu, ACS Sustain. Chem. Eng. 5(2017) 10139-10147.
doi: 10.1021/acssuschemeng.7b02143
P. Sun, W. He, H. Yang, et al., Nanoscale 10(2018) 19004-19013.
doi: 10.1039/C8NR04919J
C. Wang, K. Guo, W. He, et al., Sci. Bull. 62(2017) 1122-1131.
doi: 10.1016/j.scib.2017.08.014
J. Liao, P. Zou, S. Su, et al., J. Mater. Chem. A 6(2018) 15284-15293.
doi: 10.1039/C8TA04727H
J.S. Wei, H. Ding, P. Zhang, et al., Small 12(2016) 5927-5934.
doi: 10.1002/smll.201602164
J. Zhao, Z. Li, X. Yuan, et al., Adv. Energy Mater. 8(2018) 1702787.
doi: 10.1002/aenm.v8.12
J. Yang, C. Yu, X. Fan, J. Qiu, Adv. Energy Mater. 4(2014) 1400761.
doi: 10.1002/aenm.201400761
W. He, C. Wang, H. Li, et al., Adv. Energy Mater. 7(2017) 1700983.
doi: 10.1002/aenm.201700983
W. He, G. Zhao, P. Sun, et al., Nano Energy 56(2019) 207-215.
doi: 10.1016/j.nanoen.2018.11.048
Pu Zhang , Xiang Mao , Xuehua Dong , Ling Huang , Liling Cao , Daojiang Gao , Guohong Zou . Two UV organic-inorganic hybrid antimony-based materials with superior optical performance derived from cation-anion synergetic interactions. Chinese Chemical Letters, 2024, 35(9): 109235-. doi: 10.1016/j.cclet.2023.109235
Huirong LIU , Hao XU , Dunru ZHU , Junyong ZHANG , Chunhua GONG , Jingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066
Ning DING , Siyu WANG , Shihua YU , Pengcheng XU , Dandan HAN , Dexin SHI , Chao ZHANG . Crystalline and amorphous metal sulfide composite electrode materials with long cycle life: Preparation and performance of hybrid capacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1784-1794. doi: 10.11862/CJIC.20240146
Ting Shi , Ziyang Song , Yaokang Lv , Dazhang Zhu , Ling Miao , Lihua Gan , Mingxian Liu . Hierarchical porous carbon guided by constructing organic-inorganic interpenetrating polymer networks to facilitate performance of zinc hybrid supercapacitors. Chinese Chemical Letters, 2025, 36(1): 109559-. doi: 10.1016/j.cclet.2024.109559
Min LUO , Xiaonan WANG , Yaqin ZHANG , Tian PANG , Fuzhi LI , Pu SHI . Porous spherical MnCo2S4 as high-performance electrode material for hybrid supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 413-424. doi: 10.11862/CJIC.20240205
Fangling Cui , Zongjie Hu , Jiayu Huang , Xiaoju Li , Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337
Genlin Sun , Yachun Luo , Zhihong Yan , Hongdeng Qiu , Weiyang Tang . Chiral metal-organic frameworks-based materials for chromatographic enantioseparation. Chinese Chemical Letters, 2024, 35(12): 109787-. doi: 10.1016/j.cclet.2024.109787
Zhanheng Yan , Weiqing Su , Weiwei Xu , Qianhui Mao , Lisha Xue , Huanxin Li , Wuhua Liu , Xiu Li , Qiuhui Zhang . Carbon-based quantum dots/nanodots materials for potassium ion storage. Chinese Chemical Letters, 2025, 36(4): 110217-. doi: 10.1016/j.cclet.2024.110217
Xinyu Ren , Hong Liu , Jingang Wang , Jiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282
Sinong Wang , Shanshan Jin , Xue Yang , Yanyan Huang , Peng Liu , Yi Tang , Yuliang Yang . Development of Mg-Al LDH and LDO as novel protective materials for deacidification of paper-based relics. Chinese Chemical Letters, 2024, 35(9): 109890-. doi: 10.1016/j.cclet.2024.109890
Fengxing Liang , Yongzheng Zhu , Nannan Wang , Meiping Zhu , Huibing He , Yanqiu Zhu , Peikang Shen , Jinliang Zhu . Recent advances in copper-based materials for robust lithium polysulfides adsorption and catalytic conversion. Chinese Chemical Letters, 2024, 35(11): 109461-. doi: 10.1016/j.cclet.2023.109461
Haobo Wang , Fei Wang , Yong Liu , Zhongxiu Liu , Yingjie Miao , Wanhong Zhang , Guangxin Wang , Jiangtao Ji , Qiaobao Zhang . Emerging natural clay-based materials for stable and dendrite-free lithium metal anodes: A review. Chinese Chemical Letters, 2025, 36(2): 109589-. doi: 10.1016/j.cclet.2024.109589
Zixuan Zhu , Xianjin Shi , Yongfang Rao , Yu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954
Yufei Liu , Liang Xiong , Bingyang Gao , Qingyun Shi , Ying Wang , Zhiya Han , Zhenhua Zhang , Zhaowei Ma , Limin Wang , Yong Cheng . MOF-derived Cu based materials as highly active catalysts for improving hydrogen storage performance of Mg-Ni-La-Y alloys. Chinese Chemical Letters, 2024, 35(12): 109932-. doi: 10.1016/j.cclet.2024.109932
Na Wang , Wang Luo , Huaiyi Shen , Huakai Li , Zejiang Xu , Zhiyuan Yue , Chao Shi , Hengyun Ye , Leping Miao . Crystal engineering regulation achieving inverse temperature symmetry breaking ferroelasticity in a cationic displacement type hybrid perovskite system. Chinese Chemical Letters, 2024, 35(5): 108696-. doi: 10.1016/j.cclet.2023.108696
Huaran Zhang , Yuting Huang , Yingjie Tang , Dekun Kong , Yi Zou . Genome mining of multi-substituted alkylresorcinols from a hybrid highly reducing- and type Ⅲ- polyketide pathway. Chinese Chemical Letters, 2024, 35(7): 108968-. doi: 10.1016/j.cclet.2023.108968
Zhi-Yuan Yue , Hua-Kai Li , Na Wang , Shan-Shan Liu , Le-Ping Miao , Heng-Yun Ye , Chao Shi . Dehydration-triggered structural phase transition-associated ferroelectricity in a hybrid perovskite-type crystal. Chinese Chemical Letters, 2024, 35(10): 109355-. doi: 10.1016/j.cclet.2023.109355
Ning LI , Siyu DU , Xueyi WANG , Hui YANG , Tao ZHOU , Zhimin GUAN , Peng FEI , Hongfang MA , Shang JIANG . Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372
Shaohua Zhang , Liyao Liu , Yingqiao Ma , Chong-an Di . Advances in theoretical calculations of organic thermoelectric materials. Chinese Chemical Letters, 2024, 35(8): 109749-. doi: 10.1016/j.cclet.2024.109749
Junjie Wang , Yan Wang , Zhengdong Li , Changqiang Xie , Musammir Khan , Xingzhou Peng , Fabiao Yu . Triphenylamine-AIEgens photoactive materials for cancer theranostics. Chinese Chemical Letters, 2024, 35(6): 108934-. doi: 10.1016/j.cclet.2023.108934