Programmable pyrrole-imidazole polyamides: A potent tool for DNA targeting
- Corresponding author: Fang Lijing, lj.fang@siat.ac.cn Su Wu, wu.su@siat.ac.cn
Citation:
Wu Chunlei, Wang Wei, Fang Lijing, Su Wu. Programmable pyrrole-imidazole polyamides: A potent tool for DNA targeting[J]. Chinese Chemical Letters,
;2018, 29(7): 1105-1112.
doi:
10.1016/j.cclet.2018.05.025
L.H. Hurley, Nat. Rev. Cancer 2(2002) 188-200.
doi: 10.1038/nrc749
A. Ali, S. Bhattacharya, Bioorg. Med. Chem. 22(2014) 4506-4521.
P.B. Dervan, B.S. Edelson, Curr. Opin. Struct. Biol. 13(2003) 284-299.
doi: 10.1016/S0959-440X(03)00081-2
M.S. Blackledge, C. Melander, Bioorg. Med. Chem. 21(2013) 6101-6114.
doi: 10.1016/j.bmc.2013.04.023
P.B. Dervan, R.W. Burli, Curr. Opin. Chem. Biol. 3(1999) 688-693.
doi: 10.1016/S1367-5931(99)00027-7
C. Melander, R. Burnett, J.M. Gottesfeld, J. Biotechnol. 112(2004) 195-220.
doi: 10.1016/j.jbiotec.2004.03.018
P.B. Dervan, R.M. Doss, M.A. Marques, Curr. Med. Chem. Anti-Cancer Agents 5(2005) 373-387.
doi: 10.2174/1568011054222346
E.E. Baird, P.B. Dervan, J. Am. Chem. Soc. 118(1996) 6141-6146.
doi: 10.1021/ja960720z
N.R. Wurtz, J.M. Turner, E.E. Baird, et al., Org. Lett. 3(2001) 1201-1203.
doi: 10.1021/ol0156796
J.M. Belitsky, D.H. Nguyen, N.R. Wurtz, et al., Bioorg. Med. Chem. 10(2002) 2767-2774.
doi: 10.1016/S0968-0896(02)00133-5
D.A. Harki, N. Satyamurthy, D.B. Stout, et al., Proc. Natl. Acad. Sci. U. S. A. 105(2008) 13′39-13′44.
doi: 10.1073/pnas.0709492105
D.M. Chenoweth, D.A. Harki, P.B. Dervan, J. Am. Chem. Soc. 131(2009) 7175-7181.
doi: 10.1021/ja901307m
J.W. Puckett, J.T. Green, P.B. Dervan, Org. Lett. 14(2012) 2774-2777.
doi: 10.1021/ol3010003
A.J. Fallows, I. Singh, R. Dondi, et al., Org. Lett. 16(2014) 4654-4657.
doi: 10.1021/ol502203y
W. Su, S.J. Gray, R. Dondi, et al., Org. Lett. 11(2009) 3910-3913.
doi: 10.1021/ol9015139
L.J. Fang, G.Y. Yao, Z.Y. Pan, et al., Org. Lett. 17(2015) 158-161.
doi: 10.1021/ol503388a
Y. Kawamoto, T. Bando, F. Kamada, et al., J. Am. Chem. Soc. 135(2013) 16468-16477.
doi: 10.1021/ja406737n
M. Yamamoto, T. Bando, Y. Kawamoto, et al., Bioconjugate Chem. 25(2014) 552-559.
doi: 10.1021/bc400567m
Y. Kawamoto, A. Sasaki, K. Hashiya, et al., Chem. Sci. 6(2015) 2307-2312.
doi: 10.1039/C4SC02339K
Y. Kawamoto, A. Sasaki, A. Chandran, et al., J. Am. Chem. Soc. 138(2016) 14100-14107.
doi: 10.1021/jacs.6b09023
M. Mrksich, M.E. Parks, P.B. Dervan, J. Am. Chem. Soc. 116(1994) 7983-7988.
doi: 10.1021/ja00097a004
C.S. Jacobs, P.B. Dervan, J. Med. Chem. 52(2009) 7380-7388.
doi: 10.1021/jm900256f
F. Yang, N.G. Nickols, B.C. Li, et al., J. Med. Chem. 56(2013) 7449-7457.
doi: 10.1021/jm401100s
J.A. Raskatov, J.O. Szablowski, P.B. Dervan, J. Med. Chem. 57(2014) 8471-8476.
doi: 10.1021/jm500964c
S. Nishijima, K.-i. Shinohara, T. Bando, et al., Bioorg. Med. Chem. 18(2010) 978-983.
doi: 10.1016/j.bmc.2009.07.018
B.B. Liu, S. Wang, K. Aston, et al., Org. Biomol. Chem. 15(2017) 9880-9888.
doi: 10.1039/C7OB02513K
S. Wang, K. Aston, K.J. Koeller, et al., Org. Biomol. Chem. 12(2014) 7523-7536.
doi: 10.1039/C4OB01456A
J.L. Meier, A.S. Yu, I. Korf, et al., J. Am. Chem. Soc. 134(2012) 17814-17822.
doi: 10.1021/ja308888c
N. Fukuda, T. Ueno, Y. Tahira, et al., J. Am. Soc. Nephrol. 17(2006) 422-432.
doi: 10.1681/ASN.2005060650
J.A. Raskatov, J.L. Meier, J.W. Puckett, et al., Proc. Natl. Acad. Sci. U. S. A. 109(2012) 1023-1028.
doi: 10.1073/pnas.1118506109
N.G. Nickols, P.B. Dervan, Proc. Natl. Acad. Sci. U. S. A. 104(2007) 10418-10423.
doi: 10.1073/pnas.0704217104
X.F. Wang, H. Nagase, T. Watanabe, et al., Cancer Sci. 101(2010) 759-766.
doi: 10.1111/cas.2010.101.issue-3
J. Syed, G.N. Pandian, S. Sato, et al., Chem. Biol. 21(2014) 1370-1380.
doi: 10.1016/j.chembiol.2014.07.019
N.G. Nickols, J.O. Szablowski, A.E. Hargrove, et al., Mol. Cancer Ther. 12(2013) 675-684.
doi: 10.1158/1535-7163.MCT-12-1040
A. Tsunemi, T. Ueno, N. Fukuda, et al., J. Mol. Med. 92(2014) 509-521.
K. Hayatigolkhatmi, G. Padroni, W. Su, et al., Blood Cells Mol. Dis. 69(2018) 119-122.
doi: 10.1016/j.bcmd.2017.11.002
F. Yang, N.G. Nickols, B.C. Li, et al., Proc. Natl. Acad. Sci. U. S. A. 110(2013) 1863-1868.
doi: 10.1073/pnas.1222035110
A.A. Kurmis, F. Yang, T.R. Welch, et al., Cancer Res. 77(2017) 2207-2212.
doi: 10.1158/0008-5472.CAN-16-2503
D. Obinata, K. Takayama, K. Fujiwara, et al., Oncogene 35(2016) 6350-6358.
L. Xu, W. Wang, D. Gotte, et al., Proc. Natl. Acad. Sci. U. S. A. 113(2016) 12426-12431.
doi: 10.1073/pnas.1612745113
J. Neumann, E. Zeindl-Eberhart, T. Kirchner, et al., Pathol. Res. Pract. 205(2009) 858-862.
doi: 10.1016/j.prp.2009.07.010
R.D. Taylor, S. Asamitsu, T. Takenaka, et al., Chem. Eur. J. 20(2014) 1310-1317.
doi: 10.1002/chem.v20.5
K. Hiraoka, T. Inoue, R.D. Taylor, et al., Nat. Commun. 6(2015) 6706.
doi: 10.1038/ncomms7706
W. Su, C.R. Bagshaw, G.A. Burley, Sci. Rep. 3(2013) 1883.
doi: 10.1038/srep01883
W. Su, M. Schuster, C.R. Bagshaw, et al., Angew. Chem. Int. Ed. 50(2011) 2712-2715.
T. Hidaka, G.N. Pandian, J. Taniguchi, et al., J. Am. Chem. Soc. 139(2017) 8444-8447.
doi: 10.1021/jacs.7b05230
Z.T. Yu, C.X. Guo, Y.L. Wei, et al., J. Am. Chem. Soc. 140(2018) 2426-2429.
K. Liu, L.J. Fang, H.Y. Sun, et al., Mol. Cancer Ther. 17(2018) 988-1002.
doi: 10.1158/1535-7163.MCT-17-0747
S.D. Taverna, H.T. Li, A.J. Ruthenburg, et al., Nat. Struct. Mol. Biol. 14(2007) 1025-1040.
doi: 10.1038/nsmb1338
G.N. Pandian, H. Sugiyama, Biotechnol. J. 7(2012) 798-809.
doi: 10.1002/biot.v7.6
G.N. Pandian, Y. Nakano, S. Sato, et al., Sci. Rep. 2(2012) 544.
doi: 10.1038/srep00544
L. Han, G.N. Pandian, S. Junetha, et al., Angew. Chem. Int. Ed. 52(2013) 13410-13413.
doi: 10.1002/anie.201306766
G.N. Pandian, J. Taniguchi, S. Junetha, et al., Sci. Rep. 4(2014) 3843.
L. Han, G.N. Pandian, A. Chandran, et al., Angew. Chem. Int. Ed. 54(2015) 8700-8703.
doi: 10.1002/anie.201503607
G.S. Erwin, M.P. Grieshop, D. Bhimsaria, et al., Proc. Natl. Acad. Sci. U. S. A. 113(2016) E7418-E7427.
doi: 10.1073/pnas.1604847113
K. Maeshima, S. Janssen, U.K. Laemmli, Embo J. 20(2001) 3218-3228.
doi: 10.1093/emboj/20.12.3218
S. Sasaki, T. Bando, M. Minoshima, et al., J. Am. Chem. Soc. 128(2006) 12162-12168.
doi: 10.1021/ja0626584
R. Takahashi, T. Bando, H. Sugiyama, Bioorg. Med. Chem. 11(2003) 2503-2509.
G. Kashiwazaki, T. Bando, K.I. Shinohara, et al., Bioorg. Med. Chem. 17(2009) 1393-1397.
doi: 10.1016/j.bmc.2008.12.019
A. Hirata, K. Nokihara, Y. Kawamoto, et al., J. Am. Chem. Soc. 136(2014) 11546-11554.
doi: 10.1021/ja506058e
A. Sasaki, S. Ide, Y. Kawamoto, et al., Sci. Rep. 6(2016) 29261.
doi: 10.1038/srep29261
T.L. Schmidt, C.K. Nandi, G. Rasched, et al., Angew. Chem. Int. Ed. 46(2007) 4382-4384.
doi: 10.1002/(ISSN)1521-3773
T.L. Schmidt, A. Heckel, Small 5(2009) 1517-1520.
doi: 10.1002/smll.v5:13
T.L. Schmidt, A. Heckel, Nano Lett. 11(2011) 1739-1742.
doi: 10.1021/nl200303m
Z. Krpetic, I. Singh, W. Su, et al., J. Am. Chem. Soc. 134(2012) 8356-8359.
doi: 10.1021/ja3014924
S. Patel, D. Jung, P.T. Yin, et al., ACS Nano 8(2014) 8959-8967.
doi: 10.1021/nn501589f
S. Patel, P.T. Yin, H. Sugiyama, et al., ACS Nano 9(2015) 6909-6917.
doi: 10.1021/acsnano.5b00709
S. Patel, T. Pongkulapa, P.T. Yin, et al., J. Am. Chem. Soc. 137(2015) 4598-4601.
doi: 10.1021/ja511298n
H. Matsuda, N. Fukuda, T. Ueno, et al., Kidney Int. 79(2011) 46-56.
doi: 10.1038/ki.2010.330
Jia JI , Zhaoyang GUO , Wenni LEI , Jiawei ZHENG , Haorong QIN , Jiahong YAN , Yinling HOU , Xiaoyan XIN , Wenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344
Xiaofen GUAN , Yating LIU , Jia LI , Yiwen HU , Haiyuan DING , Yuanjing SHI , Zhiqiang WANG , Wenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122
Yao HUANG , Yingshu WU , Zhichun BAO , Yue HUANG , Shangfeng TANG , Ruixue LIU , Yancheng LIU , Hong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359
Yanfei Liu , Yaqin Hu , Yifu Tan , Qiwen Chen , Zhenbao Liu . Tumor acidic microenvironment activatable DNA nanostructure for precise cancer cell targeting and inhibition. Chinese Chemical Letters, 2025, 36(1): 110289-. doi: 10.1016/j.cclet.2024.110289
Ziqin Li , Kai Hao , Longwei Xiang , Huayu Tian . Cationic covalent organic framework nanocarriers integrating both efficient gene silencing and real-time gene detection. Chinese Chemical Letters, 2025, 36(4): 109943-. doi: 10.1016/j.cclet.2024.109943
Chang Liu , Tao Wu , Lijiao Deng , Xuzi Li , Xin Fu , Shuzhen Liao , Wenjie Ma , Guoqiang Zou , Hai Yang . Programmed DNA walkers for biosensors. Chinese Chemical Letters, 2024, 35(9): 109307-. doi: 10.1016/j.cclet.2023.109307
Ling Yang , Min Ren , Jie Wang , Liming He , Shanshan Wu , Shuai Yang , Wei Zhao , Hao Cheng , Xiaoming Zhou , Maling Gou . A non-viral gene therapy for melanoma by staphylococcal enterotoxin A. Chinese Chemical Letters, 2024, 35(5): 108822-. doi: 10.1016/j.cclet.2023.108822
Guoliang Liu , Zhiqiang Liu , Anmin Zheng . Modulation of zeolite surface realizes dynamic copper species redispersion. Chinese Journal of Structural Chemistry, 2024, 43(6): 100308-100308. doi: 10.1016/j.cjsc.2024.100308
Jian Ji , Jie Yan , Honggen Peng . Modulation of dinuclear site by orbital coupling to boost catalytic performance. Chinese Journal of Structural Chemistry, 2024, 43(8): 100360-100360. doi: 10.1016/j.cjsc.2024.100360
Juhong Zhou , Hui Zhao , Ping Han , Ziyue Wang , Yan Zhang , Xiaoxia Mao , Konglin Wu , Shengjue Deng , Wenxiang He , Binbin Jiang . Strategic modulation of CoFe sites for advanced bifunctional oxygen electrocatalyst. Chinese Journal of Structural Chemistry, 2025, 44(1): 100470-100470. doi: 10.1016/j.cjsc.2024.100470
Han Han , Bi-Te Chen , Jia-Rong Ding , Jin-Ming Si , Tian-Jiao Zhou , Yi Wang , Lei Xing , Hu-Lin Jiang . A PDGFRβ-targeting nanodrill system for pancreatic fibrosis therapy. Chinese Chemical Letters, 2024, 35(10): 109583-. doi: 10.1016/j.cclet.2024.109583
Yan Liu , Yang Wang , Jiayi Zhu , Xuxian Su , Xudong Lin , Liang Xu , Xiwen Xing . Employing pH-responsive RNA triplex to control CRISPR/Cas9-mediated gene manipulation in mammalian cells. Chinese Chemical Letters, 2024, 35(9): 109427-. doi: 10.1016/j.cclet.2023.109427
Jia-Li Xie , Tian-Jin Xie , Yu-Jie Luo , Kai Mao , Cheng-Zhi Huang , Yuan-Fang Li , Shu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137
Shaoqing Du , Xinyong Liu , Xueping Hu , Peng Zhan . Targeting novel sites represents an effective strategy for combating drug resistance. Chinese Chemical Letters, 2025, 36(1): 110378-. doi: 10.1016/j.cclet.2024.110378
Lu-Lu He , Lan-Tu Xiong , Xin Wang , Yu-Zhen Li , Jia-Bao Li , Yu Shi , Xin Deng , Zi-Ning Cui . Application of inhibitors targeting the type III secretion system in phytopathogenic bacteria. Chinese Chemical Letters, 2025, 36(4): 110044-. doi: 10.1016/j.cclet.2024.110044
Jun-Yi Wang , Jue-Yu Bao , Zheng-Guang Wu , Zheng-Yin Du , Xunwen Xiao , Xu-Feng Luo . Recent progress in steric modulation of MR-TADF materials and doping concentration independent OLEDs with narrowband emission. Chinese Journal of Structural Chemistry, 2025, 44(1): 100451-100451. doi: 10.1016/j.cjsc.2024.100451
Yue Sun , Yingnan Zhu , Jiahang Si , Ruikang Zhang , Yalan Ji , Jinjie Fan , Yuze Dong . Glucose-activated nanozyme hydrogels for microenvironment modulation via cascade reaction in diabetic wound. Chinese Chemical Letters, 2025, 36(4): 110012-. doi: 10.1016/j.cclet.2024.110012
Zhili Li , Qijun Wo , Dongdong Huang , Dezhong Zhou , Lei Guo , Yeqing Mao . Improving gene transfection efficiency of highly branched poly(β-amino ester)s through the in-situ conversion of inactive terminal groups. Chinese Chemical Letters, 2024, 35(8): 109737-. doi: 10.1016/j.cclet.2024.109737
Wu-Jian Long , Yang Yu , Chuang He . A novel and promising engineering application of carbon dots: Enhancing the chloride binding performance of cement. Chinese Chemical Letters, 2024, 35(6): 108943-. doi: 10.1016/j.cclet.2023.108943
Yulin Mao , Jingyu Ma , Jiecheng Ji , Yuliang Wang , Wanhua Wu , Cheng Yang . Crown aldoxime ethers: Their synthesis, structure, acid-catalyzed/photo-induced isomerization and adjustable guest binding. Chinese Chemical Letters, 2024, 35(11): 109927-. doi: 10.1016/j.cclet.2024.109927