Citation: Chu Guangcui, Cheng Dandan, Liu Wenjuan, Wang Xuefeng, Hou Xiaotao, Hou Yuanyuan, Wei Hongjun, Deng Jiagang, Bai Gang. Screening and evaluation of antioxidants from lees by micro-injector systems combined with a fluorescent probe, N-borylbenzyloxycarbonyl-3, 7-dihydroxyphenoxazine, in living Drosophila[J]. Chinese Chemical Letters, ;2018, 29(10): 1521-1527. doi: 10.1016/j.cclet.2018.05.020 shu

Screening and evaluation of antioxidants from lees by micro-injector systems combined with a fluorescent probe, N-borylbenzyloxycarbonyl-3, 7-dihydroxyphenoxazine, in living Drosophila

  • Corresponding author: Hou Yuanyuan, houyy@nankai.edu.cn Wei Hongjun, weihongjun@188.com
  • Received Date: 27 March 2018
    Revised Date: 4 May 2018
    Accepted Date: 7 May 2018
    Available Online: 9 October 2018

Figures(4)

  • Over the past few decades, the determination of antioxidant activity by chemical probe has been widely reported, but in vivo evaluation via model organisms of Drosophila melanogaster and rapid discovery system has not been studied adequately. In this study, we determined the antioxidant activity of lees and demonstrated the ability of compounds in lees to scavenge H2O2 in vitro and in vivo by different chemical probes. Lees increased the ability of Drosophila against oxidative stress and antioxidant enzyme activity in vivo. Five ingredients of organic acids and flavones in lees extract that rapidly scavenged H2O2 were revealed by a post-column-derived HPLC-UV-FLD system based on 4-hydroxyphenylacetic acid (PHPAA) chemiluminescence. Additionally, another fluorescent probe, N-borylbenzyloxycarbonyl-3, 7-dihydroxyphenoxazine (NBCD), was selected to evaluate the reactive oxygen species (ROS) scavenging capacity of lees in living Drosophila melanogaster using a microfluidic injection test coupled with microscopic imaging analysis, and similar effects were observed in flies when they were treated with tartaric acid and caffeic acid. The results demonstrated that the novel integrated system was suitable for screening and evaluating antioxidant ingredients from natural products.
  • 加载中
    1. [1]

      T. Ishikawa, S. Tamaki, T. Maruta, S. Shigeoka, Adv. Exp. Med. Biol. 979(2017) 47.  doi: 10.1007/978-3-319-54910-1

    2. [2]

      M. Schieber, N.S. Chandel, Curr. Biol.:Cb 24(2014) R453-R462.  doi: 10.1016/j.cub.2014.03.034

    3. [3]

      X. Liao, Y.A. Liu, Curr. Org. Chem. 17(2013) 654-669.  doi: 10.2174/1385272811317060008

    4. [4]

      A.A. Karaçelik, M. Küçük, Z. İskefiyeli, et al., Food Chem. 175(2015) 106-114.  doi: 10.1016/j.foodchem.2014.11.085

    5. [5]

      J. Damašius, P.R. Venskutonis, V. Kaškoniene, A. Maruška, Analyt. Methods 6(2014) 2774-2779.  doi: 10.1039/c3ay41703d

    6. [6]

      J.D.V.D. Merwe, E. Joubert, M. Manley, et al., Food Chem. Toxicol. 50(2012) 808-815.  doi: 10.1016/j.fct.2011.11.018

    7. [7]

      G.G. Guilbault, Anal. Chem. 40(1968) 459R-471R.

    8. [8]

      B. Qi, Y.Z. Zhu, M. Hu, Y. Zhang, X. Tang, Anal. Lett. 34(2001) 1247-1254.  doi: 10.1081/AL-100104150

    9. [9]

      I. Navarrogonzález, R. Gonzálezbarrio, V. Garcíavalverde, et al., Int. J. Mol. Sci. 16(2014) 805-822.  doi: 10.3390/ijms16010805

    10. [10]

      K.A. Lukyanov, Nat. Methods 3(2006) 281-286.  doi: 10.1038/nmeth866

    11. [11]

      M. Gutscher, M.C. Sobotta, G.H. Wabnitz, et al., J. Biol. Chem. 284(2009) 31532.  doi: 10.1074/jbc.M109.059246

    12. [12]

      K.N. Markvicheva, D.S. Bilan, N.M. Mishina, et al., Biorg. Med. Chem. 19(2011) 1079-1084.  doi: 10.1016/j.bmc.2010.07.014

    13. [13]

      D.S. Bilan, L. Pase, L. Joosen, et al., ACS Chem. Biol. 8(2013) 535-542.  doi: 10.1021/cb300625g

    14. [14]

      K. Liu, H. Shang, X. Kong, et al., Biomaterials 100(2016) 162.  doi: 10.1016/j.biomaterials.2016.05.029

    15. [15]

      H.M. Cochemé, A. Logan, T.A. Prime, et al., Nat. Protoc. 7(2012) 946-958.  doi: 10.1038/nprot.2012.035

    16. [16]

      Z. Han, X. Liang, X. Ren, L. Shang, Z. Yin, Chem-Asian J. 11(2016) 818-822.  doi: 10.1002/asia.v11.6

    17. [17]

      Y.X. Zou, M.H. Ruan, J. Luan, et al., J. Nutr. Health Aging 21(2016) 1-6.
       

    18. [18]

      L.M. De Aguiar, F.H. Figueira, M.S. Gottschalk, R.C. Da, Comp. Biochem. Phys. C 185-186(2016) 94-101.

    19. [19]

      P.B. Bagatini, L. Saur, M.F. Rodrigues, et al., Invert. Neurosci. 11(2011) 43.  doi: 10.1007/s10158-011-0116-3

    20. [20]

      X. Sun, T. Komatsu, J. Lim, et al., Aging Cell. 11(2012) 783-793.  doi: 10.1111/j.1474-9726.2012.00842.x

    21. [21]

      C. Peng, H.Y. Chan, Y. Huang, H. Yu, Z.Y. Chen, J. Agric. Food Chem. 59(2011) 2097-2106.  doi: 10.1021/jf1046267

    22. [22]

      J. Dasgupta, S. Subbaram, K.M. Connor, et al., Antioxid. Redox Signal. 8(2006) 1295-1305.  doi: 10.1089/ars.2006.8.1295

    23. [23]

      G. Patro, S.K. Bhattamisra, B.K. Mohanty, H.B. Sahoo, Pharm. Res. 8(2016) 22.

    24. [24]

      M.V. Baroni, R.D.D.P. Naranjo, C. García-Ferreyra, S. Otaiza, D.A. Wunderlin, LWT Food Sci. Technol. 47(2012) 1-7.  doi: 10.1016/j.lwt.2012.01.015

    25. [25]

      E. Kurin, P. Mučaji, M. Nagy, Molecules 17(2012) 143369-14348.

    26. [26]

      Y. Niu, L. Yin, S. Luo, et al., Phytochem. Anal. 24(2013) 59-68.  doi: 10.1002/pca.v24.1

    27. [27]

      J.Hong, J.Maguhn, D.Freitag, A.Kettrup, FreseniusJ.Anal.Chem.361(1998)124-128.  doi: 10.1007/s002160050847

    28. [28]

      N. Li, Y. Liu, S. Li, et al., Mod. Phys. Lett. B 31(2017) 1750148.
       

    29. [29]

      Z. Sroka, W. Cisowski, Food Chem. Toxicol. 41(2003) 753-758.  doi: 10.1016/S0278-6915(02)00329-0

    30. [30]

      S.Z. Gorjanović, M.M. Novaković, N.I. Potkonjak, D.Z. Suznjević, J. Agric. Food Chem. 58(2010) 4626.  doi: 10.1021/jf100022e

    31. [31]

      A.V. Peskin, A.G. Cox, P. Nagy, et al., Biochem. J. 432(2010) 313-321.  doi: 10.1042/BJ20101156

    32. [32]

      N.E. Gislason, B.L. Currie, A.L. Waterhouse, J. Agric. Food Chem. 59(2011) 6221-6226.  doi: 10.1021/jf200115y

    33. [33]

      M. Wołonciej, E. Milewska, W. Roszkowska-Jakimiec, Postepy. Hig. Med. Dosw. 70(2016) 1483.  doi: 10.5604/17322693.1229074

    34. [34]

      M.M. Cals-Grierson, Patent, WO0182929, 2001.

    35. [35]

      Y. Steffen, T. Schewe, H. Sies, Biochem. Biophys. Res. Commun. 331(2005) 1277-1283.  doi: 10.1016/j.bbrc.2005.04.035

  • 加载中
    1. [1]

      Jiahui LiQiao ShiYing XueMingde ZhengLong LiuTuoyu GengDaoqing GongMinmeng Zhao . The effects of in ovo feeding of selenized glucose on liver selenium concentration and antioxidant capacity in neonatal broilers. Chinese Chemical Letters, 2024, 35(6): 109239-. doi: 10.1016/j.cclet.2023.109239

    2. [2]

      Guizhi ZhuJunrui TanLongfei TanQiong WuXiangling RenChanghui FuZhihui ChenXianwei Meng . Growth of CeCo-MOF in dendritic mesoporous organosilica as highly efficient antioxidant for enhanced thermal stability of silicone rubber. Chinese Chemical Letters, 2025, 36(1): 109669-. doi: 10.1016/j.cclet.2024.109669

    3. [3]

      Fengrui YangDebing WangXinying ZhangJie ZhangZhichao WuQiaoying Wang . Synergistic effects of peroxydisulfate on UV/O3 process for tetracycline degradation: Mechanism and pathways. Chinese Chemical Letters, 2024, 35(10): 109599-. doi: 10.1016/j.cclet.2024.109599

    4. [4]

      Huijuan LiZhu WangJiagen GengRuiping SongXiaoyin LiuChaochen FuSi Li . Current advances in UV-based advanced oxidation processes for the abatement of fluoroquinolone antibiotics in wastewater. Chinese Chemical Letters, 2025, 36(4): 110138-. doi: 10.1016/j.cclet.2024.110138

    5. [5]

      Ren ShenYanmei FangChunxiao YangQuande WeiPui-In MakRui P. MartinsYanwei Jia . UV-assisted ratiometric fluorescence sensor for one-pot visual detection of Salmonella. Chinese Chemical Letters, 2025, 36(4): 110143-. doi: 10.1016/j.cclet.2024.110143

    6. [6]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    7. [7]

      Pu ZhangXiang MaoXuehua DongLing HuangLiling CaoDaojiang GaoGuohong Zou . Two UV organic-inorganic hybrid antimony-based materials with superior optical performance derived from cation-anion synergetic interactions. Chinese Chemical Letters, 2024, 35(9): 109235-. doi: 10.1016/j.cclet.2023.109235

    8. [8]

      Xiaomeng HuJie YuLijie SunLinfeng ZhangWei ZhouDongpeng YanXinrui Wang . Synthesis of an AVB@ZnTi-LDH composite with synergistically enhance UV blocking activity and high stability for potential application in sunscreen formulations. Chinese Chemical Letters, 2024, 35(11): 109466-. doi: 10.1016/j.cclet.2023.109466

Metrics
  • PDF Downloads(2)
  • Abstract views(889)
  • HTML views(59)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return