Distribution of micropeptide-coding sORFs in transcripts
- Corresponding author: Xu Hanmei, 13913925346@126.com
Citation:
Yin Xinqiang, Hu Jialiang, Xu Hanmei. Distribution of micropeptide-coding sORFs in transcripts[J]. Chinese Chemical Letters,
;2018, 29(7): 1029-1032.
doi:
10.1016/j.cclet.2018.04.027
M.A. Basrai, P. Hieter, J.D. Boeke, Genome Res. 7(1997) 768-771.
doi: 10.1101/gr.7.8.768
M.A. Mumtaz, J.P. Couso, Biochem. Soc. Trans. 43(2015) 1271-1276.
doi: 10.1042/BST20150170
M.I. Galindo, J.I. Pueyo, S. Fouix, S.A. Bishop, J.P. Couso, PLoS Biol. 5(2007) e106.
doi: 10.1371/journal.pbio.0050106
Y. Hashimoto, T. Kondo, Y. Kageyama, Dev. Growth Differ. 50(2008) S269-S276.
doi: 10.1111/j.1440-169X.2008.00994.x
J. Crappe, W.V. Criekinge, G. Menschaert, EuPA Open Proteom. 3(2014) 128-137.
doi: 10.1016/j.euprot.2014.02.006
I.P. Ivanov, A.E. Firth, A.M. Michel, et al., Nucleic Acids Res. 39(2011) 4220-4234.
doi: 10.1093/nar/gkr007
G. Menschaert, W. Van Criekinge, T. Notelaers, et al., Mol. Cell Proteom. 12(2013) 1780-1790.
doi: 10.1074/mcp.M113.027540
S.J. Andrews, J.A. Rothnagel, Nat. Rev. Genet. 15(2014) 193-204.
doi: 10.1038/nrg3520
L. Kong, Y. Zhang, Z.Q. Ye, et al., Nucleic Acids Res. 35(2007) W345-W349.
doi: 10.1093/nar/gkm391
L.D. Hurst, Trends Genet. 18(2002) 486.
doi: 10.1016/S0168-9525(02)02722-1
M.F. Lin, J.W. Carlson, M.A. Crosby, et al., Genome Res. 17(2007) 1823-1836.
doi: 10.1101/gr.6679507
A. Stark, M.F. Lin, P. Kheradpour, et al., Nature 450(2007) 219-232.
doi: 10.1038/nature06340
G. Butler, M.D. Rasmussen, M.F. Lin, et al., Nature 459(2007) 657-662.
M. Clamp, B. Fry, M. Kamal, et al., Proc. Natl. Acad. Sci. U. S. A. 104(2007) 19428-19433.
doi: 10.1073/pnas.0709013104
M. Guttman, I. Amit, M. Garber, et al., Nature 458(2009) 223-227.
doi: 10.1038/nature07672
M. Guttman, M. Garber, J.Z. Levin, et al., Nat. Biotechnol. 28(2010) 503-510.
doi: 10.1038/nbt.1633
M.F. Lin, I. Jungreis, M. Kellis, Bioinformatics 27(2011) i275-i282.
doi: 10.1093/bioinformatics/btr209
N.T. Ingolia, S. Ghaemmaghami, J.R. Newman, et al., Science 324(2009) 218-223.
doi: 10.1126/science.1168978
S. Lee, B. Liu, S.X. Huang, et al., Proc. Natl. Acad. Sci. U. S. A. 109(2012) E2424-E2432.
doi: 10.1073/pnas.1207846109
N.T. Ingolia, G.A. Brar, S. Rouskin, et al., Nat. Protoc. 7(2012) 1534-1550.
doi: 10.1038/nprot.2012.086
S. Iwasaki, N.T. Ingolia, Trends Biochem. Sci. 42(2017) 612-624.
doi: 10.1016/j.tibs.2017.05.004
M.V. Gerashchenko, V.N. Gladyshev, Nucleic Acids Res. 45(2017) e6.
doi: 10.1093/nar/gkw822
M. Guttman, P. Russell, N.T. Ingolia, et al., Cell 154(2013) 240-251.
doi: 10.1016/j.cell.2013.06.009
N.T. Ingolia, G.A. Brar, N. Stern-Ginossar, et al., Cell Rep. 8(2014) 1365-1379.
doi: 10.1016/j.celrep.2014.07.045
A.A. Bazzini, T.G. Johnstone, R. Christiano, et al., EMBO J. 33(2014) 981-993.
doi: 10.1002/embj.201488411
J. Crappé, E. Ndah, A. Koch, et al., Nucleic Acids Res. 43(2015) e29.
doi: 10.1093/nar/gku1283
L. Calviello, N. Mukherjee, E. Wyler, et al., Nat. Methods 13(2016) 165-170.
doi: 10.1038/nmeth.3688
J.L. Aspden, Y.C. Eyre-Walker, R.J. Phillips, et al., Elife 3(2014) e03528.
S.A. Slavoff, A.J. Mitchell, A.G. Schwaid, et al., Nat. Chem. Biol. 9(2013) 59-64.
doi: 10.1038/nchembio.1120
Q. Chu, J. Ma, A. Saghatelian, Crit. Rev. Biochem. Mol. Biol. 50(2015) 134-141.
doi: 10.3109/10409238.2015.1016215
J.A. Vizcaino, A. Csordas, N. Del-Toro, et al., Nucleic Acids Res. 44(2016) 11033.
doi: 10.1093/nar/gkw880
T.T. Cech, J.A. Steitz, Cell 157(2014) 77-94.
doi: 10.1016/j.cell.2014.03.008
E.G. Magny, J.I. Pueyo, F.M. Pearl, et al., Science 341(2013) 1116-1120.
doi: 10.1126/science.1238802
D.M. Anderson, K.M. Anderson, C.L. Chang, et al., Cell 160(2015) 595-606.
doi: 10.1016/j.cell.2015.01.009
B.R. Nelson, C.A. Makarewich, D.M. Anderson, et al., Science 351(2016) 271-275.
doi: 10.1126/science.aad4076
A. Pauli, M.L. Norris, E. Valen, et al., Science 343(2014) 1248636.
doi: 10.1126/science.1248636
G. Menschaert, W. Van Criekinge, T. Notelaers, et al., Mol. Cell. Proteom. 12(2013) 1780-1790.
doi: 10.1074/mcp.M113.027540
N.G. D'Lima, J. Ma, L. Winkler, et al., Nat. Chem. Biol. 13(2017) 174-180.
doi: 10.1038/nchembio.2249
A.M. Michel, D.E. Andreev, P.V. Baranov, BMC Bioinform. 15(2014) 380.
doi: 10.1186/s12859-014-0380-4
A. Matsumoto, A. Pasut, M. Matsumoto, et al., Nature 541(2017) 228-232.
doi: 10.1038/nature21034
S.E. Calvo, D.J. Pagliarini, V.K. Mootha, PNAS 106(2009) 7507-7512.
doi: 10.1073/pnas.0810916106
L.E. Cabrera-Quio, S. Herberg, A. Pauli, RNA Biol. 13(2016) 1051-1059.
doi: 10.1080/15476286.2016.1218589
Y. Ye, Y. Liang, Q. Yu, et al., Hum. Genet. 134(2015) 605-612.
doi: 10.1007/s00439-015-1544-7
S.E. Calvo, D.J. Pagliarini, V.K. Mootha, PNAS 106(2009) 7507-7512.
doi: 10.1073/pnas.0810916106
J.T. Mendell, N.A. Sharifi, J.L. Meyers, et al., Nat. Genet. 36(2004) 1073-1078.
doi: 10.1038/ng1429
H. Yepiskoposyan, F. Aeschimann, D. Nilsson, et al., RNA 17(2011) 2108-2118.
doi: 10.1261/rna.030247.111
K.A. Spriggs, M. Bushell, A.E. Willis, Mol. Cell 40(2010) 228-237.
doi: 10.1016/j.molcel.2010.09.028
C. Jousse, et al., Nucleic Acids Res. 29(2001) 4341-4351.
doi: 10.1093/nar/29.21.4341
C. Akimoto, E. Sakashita, K. Kasashima, et al., Biochim. Biophs. Acta1830(2013) 2728-2738.
doi: 10.1016/j.bbagen.2012.12.010
G.L. Yosten, J. Liu, H. Ji, et al., J. Physiol. 594(2016) 1601-1605.
doi: 10.1113/JP270567
B. Vanderperre, J.F. Lucier, C. Bissonnette, et al., PLoS One 8(2013) e70698.
doi: 10.1371/journal.pone.0070698
H. Mouilleron, V. Delcourt, X. Roucou, Nucleic Acids Res. 44(2016) 14-23.
doi: 10.1093/nar/gkv1218
S.A. Slavoff, et al., Nature Chem. Biol. 9(2013) 59-64.
doi: 10.1038/nchembio.1120
B. Vanderperre, et al., FASEB J. 25(2011) 2373-2386.
doi: 10.1096/fj.10-173815
D. Bergeron, et al., J. Biol. Chem. 288(2013) 21824-21835.
doi: 10.1074/jbc.M113.472654
L.J. Li, Q. Huang, H.F. Pan, et al., Exp. Cell Res. 346(2016) 248-254.
doi: 10.1016/j.yexcr.2016.07.021
D. van Rossum, B.M. Verheijen, R.J. Pasterkamp, Front. Mol. Neurosci. 9(2016) 74.
M. Cortés-López, P. Miura, Yale J. Biol. Med. 89(2016) 527-537.
D. Rong, H. Sun, Z. Li, et al., Oncotarget 8(2017) 73271-73281.
S. Qu, Z. Liu, X. Yang, Cancer Lett. 414(2018) 301-309.
doi: 10.1016/j.canlet.2017.11.022
M.M. Jiang, Z.T. Mai, S.Z. Wan, et al., J. Cancer Res. Clin. Oncol. 144(2018) 667-674.
doi: 10.1007/s00432-017-2576-2
N.R. Pamudurti, O. Bartok, M. Jens, et al., Mol. Cell 66(2017) 9-21.
doi: 10.1016/j.molcel.2017.02.021
I. Legnini, G. Di Timoteo, F. Rossi, et al., Mol. Cell 66(2017) 22-37.
doi: 10.1016/j.molcel.2017.02.017
D. Lauressergues, J.M. Couzigou, H.S. Clemente, et al., Nature 520(2015) 90-93.
doi: 10.1038/nature14346
Y. Hashimoto, T. Niikura, H. Tajima, et al., Proc. Natl. Acad. Sci. U. S. A. 98(2001) 6336-6341.
doi: 10.1073/pnas.101133498
C. Lee, J. Zeng, G.B. Drew, et al., Cell Metab. 21(2015) 443-454.
doi: 10.1016/j.cmet.2015.02.009
B. Guo, D. Zhai, E. Cabezas, et al., Nature 423(2003) 456-461.
doi: 10.1038/nature01627
D. Zhai, F. Luciano, X. Zhu, et al., J. Biol. Chem. 280(2005) 15815-15824.
doi: 10.1074/jbc.M411902200
C. Lee, K. Yen, P. Cohen, et al., Trends Endocrinol. Metab. 24(2013) 222-228.
doi: 10.1016/j.tem.2013.01.005