Citation: Li Zhijuan, Wang Weihua, Jian Hui, Li Wenjuan, Dai Bin, He Lin. Synthesis of 9-phenol-substituted xanthenes by cascade O-insertion/1, 6-conjugate addition of benzyne with ortho-hydroxyphenyl substituted para-quinone methides[J]. Chinese Chemical Letters, ;2019, 30(2): 386-388. doi: 10.1016/j.cclet.2018.04.003 shu

Synthesis of 9-phenol-substituted xanthenes by cascade O-insertion/1, 6-conjugate addition of benzyne with ortho-hydroxyphenyl substituted para-quinone methides

    * Corresponding author.
    E-mail address: helin@shzu.edu.cn (L. He)
  • Received Date: 29 January 2018
    Revised Date: 21 March 2018
    Accepted Date: 2 April 2018
    Available Online: 7 February 2018

Figures(2)

  • The cascade O-insertion/1, 6 conjugate addition between benzynes and ortho-hydroxyphenyl substituted para-quinone methides has been reported, affording 9-phenol substituted xanthenes in 49%-84% yields.
  • 加载中
    1. [1]

      (a) N. Sato, M. Jitsuoka, T. Shibata, et al., J. Med. Chem. 51 (2008) 4765-4770;
      (b) L. Äjemyr, T. Sandén, J. Widengren, P. Brzezinski, Biochemistry 48 (2009) 2173-2179;
      (c) M.C. de la Fuente, D. Dominguez, J. Org. Chem. 72 (2007) 8804-8810;
      (d) T. Kobayashi, Y. Urano, M. Kamiya, J. Am. Chem. Soc.129 (2007) 6696-6697.

    2. [2]

      N. Fitchen, P. O'Shea, P. Williams, K.R. Hardie, Mol. Immunol. 40(2003) 407-411.  doi: 10.1016/S0161-5890(03)00153-6

    3. [3]

      (a) Y. Nagano, J. Am. Chem. Soc. 129 (2007) 10324-10325;
      (b) M.P. Okoh, J.L. Hunter, J.E.T. Corrie, M.R. Webb, Biochemistry 45 (2006) 14764-14771;
      (c) L. Äjemyr, T. Sanden, J. Widengren, P. Brzezinski, Biochemistry 48 (2009) 2173-2179.

    4. [4]

      T. Lazarides, T. McCormick, P. Du, et al., J. Am. Chem. Soc. 131(2009) 9192-9194.  doi: 10.1021/ja903044n

    5. [5]

      (a) S. Bhojgude, A. Bhunia, A.T. Biju, Acc. Chem. Res. 49 (2016) 1658-1670;
      (b) A. Bhunia, S.R. Yetra, A.T. Biju, Chem. Soc. Rev. 41 (2012) 3140-3152;
      (c) S. Bhojgude, A.T. Biju, Angew. Chem. Int. Ed. 51 (2012) 1520-1522;
      (d) P.M. Tadross, B.M. Stoltz, Chem. Rev. 112 (2012) 3550-3577;
      (e) A.V. Dubrovskiy, N.A. Markina, R.C. Larock, Org. Biomol. Chem. 11 (2013) 191-218;
      (f) C. Wu, F. Shi, Asian J. Org. Chem. 2 (2013) 116-125.

    6. [6]

      K. Okuma, A. Nojima, N. Matsunaga, K. Shioji, Org. Lett. 11(2009) 169-171.  doi: 10.1021/ol802597x

    7. [7]

      (a) J. Zhao, R.C. Larock, Org. Lett. 7 (2005) 4273-4275;
      (b) J. Zhao, R.C. Larock, J. Org. Chem. 72 (2007) 583-588;
      (c) C. Lu, A.V. Dubrovskiy, R.C. Larock, Tetrahedron Lett. 53 (2012) 2202-2205;
      (d) A.V. Dubrovskiy, R.C. Larock, Org. Lett. 12 (2010) 1180-1183;
      (e) Y. Fang, D.C. Rogness, R.C. Larock, F. Shi, J. Org. Chem. 77 (2012) 6262-6270.

    8. [8]

      X. Huang, T. Zhang, J. Org. Chem. 75(2010) 506-509.  doi: 10.1021/jo902311a

    9. [9]

      (a) P. Chauhan, U. Kaya, D. Enders, Adv. Synth. Catal. 359 (2017) 888-912;
      (b) M.M. Toteva, J.P. Richard, Adv. Phys. Org. Chem. 45 (2011) 39-91;
      (c) A. Parra, M. Tortosa, ChemCatChem 7 (2015) 1524-1526.

    10. [10]

      (a) Z. Yuan, K. Gai, Y. Wu, et al., Chem. Commun. 53 (2017) 3485-3488;
      (b) Z. Yuan, L. Liu, R. Pan, H. Yao, A. Lin, J. Org. Chem. 82 (2017) 8743-8751;
      (c) Z. Yuan, R. Pan, H. Zhang, et al., Adv. Synth. Catal. 359 (2017) 4244-4249;
      (d) V. Reddy, R.V. Anand, Org. Lett. 17 (2015) 3390-3393;
      (e) P. Goswami, G. Singh, R.V. Anand, Org. Lett. 19 (2017) 1982-1985;
      (f) K. Zhao, Y. Zhi, A. Wang, D. Enders, ACS Catal. 6 (2016) 657-660;
      (g) Y. Lou, P. Cao, T. Jia, et al., Angew. Chem. Int. Ed. 54 (2015) 12134-12138;
      (h) W.D. Chu, L.F. Zhang, X. Bao, et al., Angew. Chem. Int. Ed. 52 (2013) 9229-9233;
      (i) X.Z. Zhang, Y.H. Deng, K.J. Gan, et al., Org. Lett. 19 (2017) 1752-1755;
      (j) Z. Wang, Y.F. Wong, J. Sun, Angew. Chem. Int. Ed. 54 (2015) 13711-13714;
      (k) Y.F. Wong, Z. Wang, J. Sun, Org. Biomol. Chem. 14 (2016) 5751-5754;
      (l) H. Lv, W. Jia, L. Sun, S. Ye, Angew. Chem. Int. Ed. 52 (2013) 8607-8610;
      (m) H. Lv, L. You, S. Ye, Adv. Synth. Catal. 351 (2009) 2822-2826;
      (n) J.J. Zhao, S.B. Sun, S.H. He, Q. Wu, F. Shi, Angew. Chem. Int. Ed. 54 (2015) 5460-5464;
      (o) J.J. Zhao, Y.C. Zhang, M.M. Xu, M. Tang, F. Shi, J. Org. Chem. 80 (2015) 10016-10024;
      (p) Y.C. Zhang, Q.N. Zhu, X. Yang, L.J. Zhou, F. Shi, J. Org. Chem. 81 (2016) 1681-1688;
      (q) P. Chen, K. Wang, W.G. Guo, et al., Angew. Chem. Int. Ed. 56 (2017) 3689-3693;
      (r) Z.B. Wang, J.W. Sun, Org. Lett. 19 (2017) 2334-2337.

    11. [11]

      (a) K. Zhao, Y. Zhi, T. Shu, et al., Angew. Chem. Int. Ed. 55 (2016) 12104-12108;
      (b) S. Liu, X.C. Lan, K. Chen, et al., Org. Lett. 19 (2017) 3831-3834;
      (c) J.Y. Liao, Q. Ni, Y. Zhao, Org. Lett. 19 (2017) 4074-4077;
      (d) L. Liu, Z. Yuan, R. Pan, et al., Org. Chem. Front. 5 (2018) 623-628.

    12. [12]

      (a) L. He, J.X. Pian, J.F. Shi, G.F. Du, B. Dai, Tetrahedron 70 (2014) 2400-2405;
      (b) J.X. Pian, L. He, G.F. Du, H. Guo, B. Dai, J. Org. Chem. 79 (2014) 5820-5826;
      (c) K. Liu, L.L. Liu, C.Z. Gu, B. Dai, L. He, RSC Adv. 6 (2016) 33606-33610;
      (d) L.L. Liu, Z.J. Li, C.Z. Gu, L. He, B. Dai, J. Saudi, Chem. Soc. 21 (2017) 458-465;
      (e) L. He, J.X. Pian, J.Y.Z. Zhang Li, Chin. Chem. Lett. 23 (2012) 1359-1362;
      (f) J. Zhang, K. Liu, H. Jian, Z.J. Li, L. He, Tetrahedron Lett. 58 (2017) 2964-2968;
      (g) H. Jian, K. Liu, W.H. Wang, et al., Tetrahedron Lett. 58 (2017) 1137-1141.

    13. [13]

      G.J. Mei, S.L. Xu, W.Q. Zheng, C.Y. Bian, F. Shi, J. Org. Chem. 83(2018) 1414-1421.  doi: 10.1021/acs.joc.7b02942

    14. [14]

      Y. Himeshima, T. Sonoda, H. Kobayashi, Chem. Lett. 12(1983) 1211-1214.  doi: 10.1246/cl.1983.1211

  • 加载中
    1. [1]

      Qian LiuYi ShiKaiya WangXiao-Yu Hu . Tailoring cascade hydrolysis and cyclization efficiency in confined spaces via spatial and electrostatic regulation. Chinese Chemical Letters, 2025, 36(12): 111462-. doi: 10.1016/j.cclet.2025.111462

    2. [2]

      Xiaohui FuYanping ZhangJuan LiaoZhen-Hua WangYong YouJian-Qiang ZhaoMingqiang ZhouWei-Cheng Yuan . Palladium-catalyzed enantioselective decarboxylation of vinyl cyclic carbamates: Generation of amide-based aza-1,3-dipoles and application to asymmetric 1,3-dipolar cycloaddition. Chinese Chemical Letters, 2024, 35(12): 109688-. doi: 10.1016/j.cclet.2024.109688

    3. [3]

      Jun LiuZhaoyu FengRenming PanXiaolong YuMeijuan ZhouGang ZhaoHongyu Wang . Enantioselective regulation to coronal polyheterocyclic compounds via phosphonium salt-catalyzed cycloadditions of azomethine imines with γ-butenolides. Chinese Chemical Letters, 2025, 36(8): 110647-. doi: 10.1016/j.cclet.2024.110647

    4. [4]

      Gangsheng LiXiang YuanFu LiuZhihua LiuXujie WangYuanyuan LiuYanmin ChenTingting WangYanan YangPeicheng Zhang . Three-step synthesis of flavanostilbenes with a 2-cyclohepten-1-one core by Cu-mediated [5 + 2] cycloaddition/decarboxylation cascade. Chinese Chemical Letters, 2025, 36(2): 109880-. doi: 10.1016/j.cclet.2024.109880

    5. [5]

      Ruolin CHENGYue WANGFei YANGHuagen LIANGShijian LU . Application of metal-organic frameworks (MOFs) in photocatalytic CO2 cycloaddition reaction: A mini review. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2429-2440. doi: 10.11862/CJIC.20250242

    6. [6]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    7. [7]

      Yan-Li LiZhi-Ming LiKai-Kai WangXiao-Long He . Beyond 1,4-addition of in-situ generated (aza-)quinone methides and indole imine methides. Chinese Chemical Letters, 2024, 35(7): 109322-. doi: 10.1016/j.cclet.2023.109322

    8. [8]

      Kebo XieQian ZhangFei YeJungui Dai . A multi-enzymatic cascade reaction for the synthesis of bioactive C-oligosaccharides. Chinese Chemical Letters, 2024, 35(6): 109028-. doi: 10.1016/j.cclet.2023.109028

    9. [9]

      Yue SunYingnan ZhuJiahang SiRuikang ZhangYalan JiJinjie FanYuze Dong . Glucose-activated nanozyme hydrogels for microenvironment modulation via cascade reaction in diabetic wound. Chinese Chemical Letters, 2025, 36(4): 110012-. doi: 10.1016/j.cclet.2024.110012

    10. [10]

      Min YanZihao YePing Lu . Catalyst-free, visible-light-induced [2π + 2σ] cycloaddition towards azabicyclohexanes. Chinese Chemical Letters, 2025, 36(6): 110540-. doi: 10.1016/j.cclet.2024.110540

    11. [11]

      Meixin WangYizhi ZhangShanshan LiuXiao Shen . Synthesis of rigidified cyclohexanes enabled by visible-light-induced trifluoroacetylsilane-mediated [2 + 2] cycloaddition of cyclopropenes. Chinese Chemical Letters, 2025, 36(8): 110758-. doi: 10.1016/j.cclet.2024.110758

    12. [12]

      Ruowen Liang Chao Zhang Guiyang Yan . Enhancing CO2 cycloaddition through ligand functionalization: A case study of UiO-66 metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(2): 100211-100211. doi: 10.1016/j.cjsc.2023.100211

    13. [13]

      Liliang ChuXiaoyan ZhangJianing LiXuelei DengMiao WuYa ChengWeiping ZhuXuhong QianYunpeng Bai . Continuous-flow synthesis of polysubstituted γ-butyrolactones via enzymatic cascade catalysis. Chinese Chemical Letters, 2024, 35(4): 108896-. doi: 10.1016/j.cclet.2023.108896

    14. [14]

      Ji-Jia ZhouLi-Gao LiuZhen-Tao ZhangHao-Xuan DongXin LuZhou XuXin-Qi ZhuBo ZhouLong-Wu Ye . Copper-catalyzed asymmetric cascade diyne cyclization/Meinwald rearrangement. Chinese Chemical Letters, 2025, 36(9): 110870-. doi: 10.1016/j.cclet.2025.110870

    15. [15]

      Jing-Qi TaoShuai LiuTian-Yu ZhangHong XinXu YangXin-Hua DuanLi-Na Guo . Photoinduced copper-catalyzed alkoxyl radical-triggered ring-expansion/aminocarbonylation cascade. Chinese Chemical Letters, 2024, 35(6): 109263-. doi: 10.1016/j.cclet.2023.109263

    16. [16]

      Zhendong LiuSainan LiuBin LiuQi MengMeng YuanChunzheng YangYulong BianPing'an MaJun Lin . Fe(Ⅲ)-juglone nanoscale coordination polymers for cascade chemodynamic therapy through synergistic ferroptosis and apoptosis strategy. Chinese Chemical Letters, 2024, 35(11): 109626-. doi: 10.1016/j.cclet.2024.109626

    17. [17]

      Yingtao ZhongZiwen QiuYanmei LiJiaqi HuangZhenming LuRenjiang KongNi YanHong Cheng . Nutrients deprivation of biomimetic nanozymes for cascade catalysis triggered and oxidative damage induced tumor eradication. Chinese Chemical Letters, 2025, 36(3): 109846-. doi: 10.1016/j.cclet.2024.109846

    18. [18]

      Bo LiuShuaiqiang ShaoJunjie CaiZijian ZhangFeng TianKun YangFan Li . Signal cascade amplification of streptavidin-biotin-modified immunofluorescence nanocapsules for ultrasensitive detection of glial fibrillary acidic protein. Chinese Chemical Letters, 2025, 36(3): 109814-. doi: 10.1016/j.cclet.2024.109814

    19. [19]

      Xueying ShiXiaoxuan ZhouBing XiaoHongxia XuWei ZhangHongjie HuShiqun ShaoZhuxian ZhouYouqing ShenXiaodan XuJianbin Tang . A β-lapachone-loaded iron-polyphenol nanocomplex enhances chemodynamic therapy through cascade amplification of ROS in tumor. Chinese Chemical Letters, 2025, 36(5): 110178-. doi: 10.1016/j.cclet.2024.110178

    20. [20]

      Chonglong HeYulong WangQuan-Xin LiZichen YanKeyuan ZhangShao-Fei NiXin-Hua DuanLe Liu . Alkylarylation of alkenes with arylsulfonylacetate as bifunctional reagent via photoredox radical addition/Smiles rearrangement cascade. Chinese Chemical Letters, 2025, 36(5): 110253-. doi: 10.1016/j.cclet.2024.110253

Metrics
  • PDF Downloads(5)
  • Abstract views(1301)
  • HTML views(40)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return