Discovery, structure, and chemical synthesis of disulfide-rich peptide toxins and their analogs
- Corresponding author: Fang Ge-Min, fgmsxy@gmail.com Meng Xiang-Ming, mengxm@ahu.edu.cn
Citation:
Fang Ge-Min, Chen Xiao-Xu, Yang Qian-Qian, Zhu Liang-Jing, Li Ning-Ning, Yu Hai-Zhu, Meng Xiang-Ming. Discovery, structure, and chemical synthesis of disulfide-rich peptide toxins and their analogs[J]. Chinese Chemical Letters,
;2018, 29(7): 1033-1042.
doi:
10.1016/j.cclet.2018.02.002
K. Fosgerau, T. Hoffamnn, Drug Discov. Today 20(2015) 122-128.
doi: 10.1016/j.drudis.2014.10.003
B.B. Carstens, G. Berecki, J.T. Daniel, et al., Angew. Chem. Int. Ed. 55(2016) 4692-4696.
doi: 10.1002/anie.201600297
T. Durek, I. Vetter, C.I.A. Wang, et al., ACS Chem. Biol. 8(2013) 1215-1222.
doi: 10.1021/cb400012k
H. Zhang, M. Du, J. Xie, et al., Angew. Chem. Int. Ed. 55(2016) 9306-9310.
doi: 10.1002/anie.201603052
C. Heinis, T. Rutherford, S. Freund, G. Winter, Nat. Chem. Biol. 5(2009) 502-507.
doi: 10.1038/nchembio.184
T. Passioura, T. Katoh, Y. Goto, H. Suga, Annu. Rev. Biochem. 83(2014) 727-752.
doi: 10.1146/annurev-biochem-060713-035456
Y. Li, A. Gould, T. Aboye, et al., J. Med. Chem. 60(2017) 1916-1927.
doi: 10.1021/acs.jmedchem.6b01689
K. Jagadish, A. Gould, R. Borra, et al., Angew. Chem. Int. Ed. 54(2015) 8390-8394.
doi: 10.1002/anie.201501186
J.G. McGivern, Neuropsychiatr. Dis. Treat. 3(2007) 69-85.
doi: 10.2147/nedt.2007.3.issue-1
S.W.B. Yu, S.S.C. Rao, Therap. Adv. Gastroenterol. 7(2014) 193-205.
doi: 10.1177/1756283X14537882
R.H. Thomas, D.R. Luthin, Pharmacotherapy 35(2015) 613-630.
doi: 10.1002/phar.2015.35.issue-6
K.B. Akondi, M. Muttenthaler, S. Dutertre, et al., Chem. Rev.114(2014) 5815-5847.
doi: 10.1021/cr400401e
A.C. Conibear, D.J. Craik, Angew. Chem. Int. Ed. 53(2014) 10612-10623.
doi: 10.1002/anie.201402167
B.M. Olivera, W.R. Gray, R. Zeikus, et al., Science 230(1985) 1338-1343.
doi: 10.1126/science.4071055
R.A. Myers, L.J.L. Cruz, J.E. Rivier, B.M. Olivera, Chem. Rev. 93(1993) 1923-1936.
doi: 10.1021/cr00021a013
A.G. Craig, J. Toxicol. Toxin Rev. 19(2000) 53-93.
doi: 10.1081/TXR-100100315
B.M. Ueberheide, D. Fenyö, P.F. Alewood, B.T. Chait, Proc. Natl. Acad. Sci. U. S. A. 106(2009) 6910-6915.
doi: 10.1073/pnas.0900745106
Q.Y. He, Q.Z. He, X.C. Deng, et al., Nucleic Acids Res. 36(2008) D293-297.
G. Naamati, M. Askenazi, M. Linial, Nucleic Acids Res. 37(2009) W363-368.
doi: 10.1093/nar/gkp299
E. Lim, A. Pon, Y. Djoumbou, et al., Nucleic Acids Res. 38(2010) D781-786.
doi: 10.1093/nar/gkp934
Q. Kaas, R. Yu, A.H. Jin, S. Dutertre, D.J. Craik, Nucleic Acids Res. 40(2012) D325-330.
doi: 10.1093/nar/gkr886
J. Gehrmann, N.L. Daly, P.F. Alewood, D.J. Craik, J. Med. Chem. 42(1999) 2364-2372.
doi: 10.1021/jm990114p
B. Thomma, B. Cammue, K. Thevissen, Planta 216(2002) 193-202.
doi: 10.1007/s00425-002-0902-6
T. Ganz, Nat. Rev. Immunol. 3(2003) 710-720.
doi: 10.1038/nri1180
R.I. Lehrer, T. Ganz, Curr. Opin. Immunol. 14(2002) 96-102.
doi: 10.1016/S0952-7915(01)00303-X
D.J. Schibli, H.N. Hunter, V. Aseyev, et al., J. Biol. Chem. 277(2002) 8279-8289.
doi: 10.1074/jbc.M108830200
Y.Q. Tang, J. Yuan, G. Ösapay, et al., Science 286(1999) 498-502.
doi: 10.1126/science.286.5439.498
M.C. Alexander, T. Hong, L.M. Boo, et al., Proc. Natl. Acad. Sci. U. S. A. 99(2002) 1813-1818.
doi: 10.1073/pnas.052706399
M. Trabi, H.J. Schirra, D.J. Craik, Biochemistry 40(2001) 4211-4221.
doi: 10.1021/bi002028t
A.C. Conibear, K.J. Rosengren, N.L. Daly, S.T. Henriques, D.J. Craik, J. Biol. Chem. 288(2013) 10830-10840.
doi: 10.1074/jbc.M113.451047
D.J. Craik, N.L. Daly, T. Bond, C. Waine, J. Mol. Biol. 294(1999) 1327-1336.
doi: 10.1006/jmbi.1999.3383
S.T. Henriques, D.J. Craik, ACS Chem. Biol. 7(2012) 626-636.
doi: 10.1021/cb200395f
C.T.T. Wong, D.K. Rowlands, C.H. Wong, et al., Angew. Chem. Int. Ed. 51(2012) 5620-5624.
doi: 10.1002/anie.201200984
K. Jagadish, A. Gould, R. Borra, et al., Angew. Chem. Int. Ed. 54(2015) 8390-8394.
doi: 10.1002/anie.201501186
C.K. Wang, C.W. Gruber, M. Cemazar, et al., ACS Chem. Biol. 9(2014) 156-163.
doi: 10.1021/cb400548s
M.E. Felizmenio-Quimio, N.L. Daly, D.J. Craik, J. Biol. Chem. 276(2001) 22875-22882.
doi: 10.1074/jbc.M101666200
C. Jennings, J. West, C. Waine, D. Craik, M. Anderson, Proc. Natl. Acad. Sci. U. S. A. 98(2001) 10614-10619.
doi: 10.1073/pnas.191366898
M.L. Colgrave, A.C. Kotze, Y.H. Huang, et al., Biochemistry 47(2008) 5581-5589.
doi: 10.1021/bi800223y
M.R.R. Plan, I. Saska, A.G. Caguan, D.J. Craik, J. Agric. Food. Chem. 56(2008) 5237-5241.
doi: 10.1021/jf800302f
B. Chen, M.L. Colgrave, N.L. Daly, et al., J. Biol. Chem. 280(2005) 22395-22405.
doi: 10.1074/jbc.M501737200
S.T. Henriques, Y.H. Huang, S. Chaousis, et al., Chem. Biol. 22(2015) 1087-1097.
doi: 10.1016/j.chembiol.2015.07.012
H. Terlau, B.M. Olivera, Physiol. Rev. 84(2004) 41-68.
doi: 10.1152/physrev.00020.2003
W.R. Gray, B.M. Olivera, G.C. Zafaralla, et al., Biochemistry 31(1992) 11864-11873.
doi: 10.1021/bi00162a027
E. Leipold, A. Hansel, B.M. Olivera, H. Terlau, S.H. Heinemann, FEBS Lett. 579(2005) 3881-3884.
doi: 10.1016/j.febslet.2005.05.077
K.J. Shon, M. Stocker, H. Terlau, et al., J. Biol. Chem. 273(1998) 33-38.
doi: 10.1074/jbc.273.1.33
K.J. Nielsen, T. Schroeder, R. Lewis, J. Mol. Recognit. 13(2000) 55-70.
doi: 10.1002/(ISSN)1099-1352
R.A. Li, G.F. Tomaselli, Toxicon 44(2004) 117-122.
doi: 10.1016/j.toxicon.2004.03.028
G.P. Miljanich, Curr. Med. Chem. 11(2004) 3029-3040.
doi: 10.2174/0929867043363884
L. Moise, A. Piserchio, V.J. Basus, E. Hawrot, J. Biol. Chem. 277(2002) 12406-12417.
doi: 10.1074/jbc.M110320200
H.S. Young, L.G. Herbette, V. Skita, Biophys. J. 85(2003) 943-953.
doi: 10.1016/S0006-3495(03)74533-0
Y.H. Chen, J.C. Tai, W.J. Huang, et al., Biochemistry 21(1982) 2592-2600.
doi: 10.1021/bi00540a003
R. Doley, R.M. Kini, Cell. Mol. Life Sci. 66(2009) 2851-2871.
doi: 10.1007/s00018-009-0050-2
Y.C. Cheng, J.J. Wang, L.S. Chang, Toxicon 51(2008) 304-315.
doi: 10.1016/j.toxicon.2007.10.006
J.H. Shiu, C.Y. Chen, L.S. Chang, et al., Proteins 57(2004) 839-849.
doi: 10.1002/(ISSN)1097-0134
J.C. Dewan, G.A. Grant, J.C. Sacchettini, Biochemistry 33(1994) 13147-13154.
doi: 10.1021/bi00248a026
J. Ciolek, H. Reinfrank, L. Quinton, et al., Proc. Natl. Acad. Sci. U. S. A.114(2017) 7154-7159.
doi: 10.1073/pnas.1620454114
S. Diochot, A. Baron, M. Salinas, et al., Nature 490(2012) 552-555.
doi: 10.1038/nature11494
J.P. Rosso, J.R. Schwarz, M. Diaz-Bustamante, et al., Proc. Natl. Acad. Sci. U. S. A. 112(2015) E891-E900.
doi: 10.1073/pnas.1415488112
P. Hidalgo, R. Mackinnon, Science 268(1995) 307-310.
doi: 10.1126/science.7716527
R.C.R. Vega, L.D. Possani, Toxicon 43(2004) 865-875.
doi: 10.1016/j.toxicon.2004.03.022
T. Durek, I. Vetter, C.A. Wang, et al., ACS Chem. Biol. 8(2013) 1215-1222.
doi: 10.1021/cb400012k
J.J. Smith, J.M. Hill, M.J. Little, et al., Proc. Natl. Acad. Sci. U. S. A. 108(2011) 10478-10483.
doi: 10.1073/pnas.1103501108
M.L. Ruiz, R.L. Kraus, J. Med. Chem. 58(2015) 7093-7118.
doi: 10.1021/jm501981g
D.J. Craik, N.L. Daly, C. Waine, Toxicon 39(2001) 43-60.
doi: 10.1016/S0041-0101(00)00160-4
J.H. Park, K.P. Carlin, G. Wu, et al., J. Med. Chem. 57(2014) 6623-6631.
doi: 10.1021/jm500687u
J.D. Osteen, V. Herzig, J. Gilchrist, et al., Nature 534(2016) 494-499.
doi: 10.1038/nature17976
J. Siemens, S. Zhou, R. Piskorowski, et al., Nature 444(2006) 208-212.
doi: 10.1038/nature05285
C.J. Bohlen, A. Priel, S. Zhou, et al., Cell 141(2010) 834-845.
doi: 10.1016/j.cell.2010.03.052
M. Kita, D.S. Black, O. Ohno, et al., J. Am. Chem. Soc.131(2009) 18038-18039.
doi: 10.1021/ja908148z
S. Yang, Y. Xiao, D. Kang, et al., Proc. Natl. Acad. Sci. U. S. A.110(2013) 17534-17539.
doi: 10.1073/pnas.1306285110
Z.C. Liu, R. Zhang, F. Zhao, et al., J. Proteome Res. 11(2012) 6197-6212.
doi: 10.1021/pr300881d
P. Sun, F. Wu, M. Wen, et al., Sci. Rep. 5(2015) 13399.
doi: 10.1038/srep13399
M.J. Gallagher, K.M. Blumenthal, J. Biol. Chem. 269(1994) 254-259.
Z. Dekan, S.J.Headey, M. Scanlon, et al., Angew. Chem. Int. Ed.56(2017) 8495-8499.
doi: 10.1002/anie.201703360
A. Gould, Y. Li, S. Majumder, et al., Mol. BioSyst. 8(2012) 1359-1365.
doi: 10.1039/c2mb05451e
J.S. Zheng, S. Tang, G. Ye, H.N. Chang, L. Liu, ChemBioChem 13(2012) 542-546.
doi: 10.1002/cbic.v13.4
J.X. Wang, G.M. Fang, Y. He, et al., Angew. Chem. Int. Ed. 54(2015) 2194-2198.
doi: 10.1002/anie.201408078
M. Pan, Y. He, M. Wen, et al., Chem. Commun. 50(2014) 5837-5839.
doi: 10.1039/C4CC00779D
P.E. Dawson, T.W. Muir, I. Clark-Lewis, S.B.H. Kent, Science 266(1994) 776-779.
doi: 10.1126/science.7973629
G.M. Fang, J.X. Wang, L. Liu, Angew. Chem. Int. Ed. 51(2012) 10347-10350.
doi: 10.1002/anie.201203843
J.S. Zheng, S. Tang, Y.K. Qi, Z.P. Wang, L. Liu, Nat. Protoc. 8(2013) 2483-2495.
doi: 10.1038/nprot.2013.152
J.S. Zheng, H.N. Chang, F.L. Wang, L. Liu, J. Am. Chem. Soc. 133(2011) 11080-11083.
doi: 10.1021/ja204088a
S. Tang, Y.Y. Si, Z.P. Wang, et al., Angew. Chem. Int. Ed. 54(2015) 5713-5717.
doi: 10.1002/anie.201500051
G.M. Fang, Y.M. Li, F. Shen, et al., Angew. Chem. Int. Ed. 50(2011) 7645-7649.
doi: 10.1002/anie.201100996
Y.C. Huang, Y.M. Li, Y. Chen, et al., Angew. Chem. Int. Ed. 52(2013) 4858-4862.
doi: 10.1002/anie.v52.18
Y.M. Li, Y.T. Li, M. Pan, et al., Angew. Chem. Int. Ed. 53(2014) 2198-2202.
doi: 10.1002/anie.201310010
Z. Wang, W. Xu, L. Liu, T.F. Zhu, Nat. Chem. 8(2016) 698-704.
doi: 10.1038/nchem.2517
M. Pan, S. Gao, Y. Zheng, et al., J. Am. Chem. Soc. 138(2016) 7429-7435.
doi: 10.1021/jacs.6b04031
R. Zitterbart, O. Seitz, Angew. Chem. Int. Ed. 55(2016) 7252-7256.
doi: 10.1002/anie.201601843
S.F. Loibl, Z. Harpaz, O. Seitz, Angew. Chem. Int. Ed. 54(2015) 15055-15059.
doi: 10.1002/anie.201505274
M.M. Altamirano, C. García, L.D. Possani, A.R. Fersht, Nat. Biotechnol. 17(1999) 187-191.
doi: 10.1038/6192
M. Sela, F.H. White, C.B. Anfinsen, Science 125(1957) 691-692.
doi: 10.1126/science.125.3250.691
G. Bulaj, O. Buczek, I. Goodsell, et al., Proc. Natl. Acad. Sci. U. S. A. 100(2003) 14562-14568.
doi: 10.1073/pnas.2335845100
A. Schrimpf, U. Linne, A. Geyer, Org. Biomol. Chem. 15(2017) 2512-2521.
doi: 10.1039/C6OB02746F
V.P. Terrier, A.F. Delmas, V. Aucagne, Org. Biomol. Chem. 15(2017) 316-319.
doi: 10.1039/C6OB02546C
C.I. Schroeder, L.D. Rash, X. Vila-Farrés, et al., Angew. Chem. Int. Ed. 53(2014) 1017-1020.
doi: 10.1002/anie.201308898
B. Dang, T. Kubota, A.M. Correa, F. Bezanilla, S.B.H. Kent, Angew. Chem. Int. Ed. 53(2014) 8970-8974.
doi: 10.1002/anie.201404438
B. Dang, T. Kubota, K. Mandal, et al., Angew. Chem. Int. Ed. 55(2016) 8639-8642.
doi: 10.1002/anie.201603420
B. Dang, T. Kubota, K. Mandal, F. Bezanilla, S.B.H. Kent, J. Am. Chem. Soc. 135(2013) 11911-11919.
doi: 10.1021/ja4046795
M. Góngora-Benítez, J. Tulla-Puche, F. Albericio, Chem. Rev. 114(2014) 901-926.
doi: 10.1021/cr400031z
T.M. Postma, F. Albericio, Eur. J. Org. Chem. 17(2014) 3519-3530.
H. Hibino, Y. Miki, Y. Nishiuchi, J. Pept. Sci. 20(2014) 30-35.
doi: 10.1002/psc.v20.1
Y.K. Qi, S. Tang, Y.C. Huang, et al., Org. Biomol. Chem. 14(2016) 4194-4198.
doi: 10.1039/C6OB00450D
B.L. Pentelute, S.B.H. Kent, Org. Lett. 9(2007) 687-690.
doi: 10.1021/ol0630144
X. Yang, V. Gelfanov, F. Liu, R. DiMarchi, Org. Lett. 18(2016) 5516-5519.
doi: 10.1021/acs.orglett.6b02751
S.K. Maity, M. Jbara, S. Laps, A. Brik, Angew. Chem. Int. Ed. 55(2016) 8108-8112.
doi: 10.1002/anie.201603169
M. Jbara, S.K. Maity, A. Brik, Angew. Chem. Int. Ed. 56(2017) 10644-10655.
doi: 10.1002/anie.201702370
T.D. Kondasinghe, H.Y. Saraha, S.B. Odeesho, J.L. Stockdill, Org. Biomol. Chem. 15(2017) 2914-2918.
doi: 10.1039/C7OB00536A
T.M. Postma, M. Giraud, F. Albericio, Org. Lett. 14(2012) 5468-5471.
doi: 10.1021/ol3025499
M. Muttenthaler, Y.G. Ramos, D. Feytens, A.D. de Araujo, P.F. Alewood, Pept. Sci. 94(2010) 423-432.
doi: 10.1002/bip.21502
A. Brust, C.I.A. Wang, N.L. Daly, et al., Angew. Chem. Int. Ed. 52(2013) 12020-12023.
doi: 10.1002/anie.201304660
F. Shen, Z.P. Zhang, J.B. Li, Y. Lin, L. Liu, Org. Lett. 13(2011) 568-571.
doi: 10.1021/ol1028755
Z. Dekan, M. Mobli, M.W. Pennington, et al., Angew. Chem. Int. Ed. 53(2014) 2931-2934.
doi: 10.1002/anie.v53.11
J.L. Stymiest, B.F. Mitchell, S. Wong, J.C. Vederas, Org. Lett. 5(2003) 47-49.
doi: 10.1021/ol027160v
D.J. Derksen, J.L. Stymiest, J.C. Vederas, J. Am. Chem. Soc. 128(2006) 14252-14253.
doi: 10.1021/ja066203q
S. Chhabra, A. Belgi, P. Bartels, et al., J. Med. Chem. 57(2014) 9933-9944.
doi: 10.1021/jm501126u
B.J. van Lierop, S.D. Robinson, S.N. Kompella, et al., ACS Chem. Biol. 8(2013) 1815-1821.
doi: 10.1021/cb4002393
A. Glas, D. Bier, G. Hahne, et al., Angew. Chem. Int. Ed. 53(2014) 2489-2493.
doi: 10.1002/anie.201310082
A. Glas, T.N. Grossmann, Synletter 26(2015) 1-5.
doi: 10.1055/s-00000083
H.K. Cui, Y. Guo, Y. He, et al., Angew. Chem. Int. Ed. 52(2013) 9558-9562.
doi: 10.1002/anie.v52.36
Y. Guo, D.M. Sun, F.L. Wang, et al., Angew. Chem. Int. Ed. 54(2015) 14276-14281.
doi: 10.1002/anie.201500699
Y. Xu, T. Wang, C.J. Guan, et al., Tetrahedron Lett. 58(2017) 1677-1680.
doi: 10.1016/j.tetlet.2017.03.024
Y. Guo, C. Liu, H. Song, et al., RSC Adv. 7(2017) 2110-2114.
doi: 10.1039/C6RA26617G
Y. Wu, Y.H. Li, X. Li, et al., Chem. Sci. 8(2017) 7368-7373.
doi: 10.1039/C7SC02420G
Y. Xu, L. Xu, Y. Xia, et al., Chem. Commun. 51(2015) 13189-13192.
P.J. Knerr, W.A. van der Donk, Ann. Rev. Biochem. 81(2012) 479-505.
doi: 10.1146/annurev-biochem-060110-113521
L. Huo, W.A. van der Donk, J. Am. Chem. Soc. 138(2016) 5254-5257.
doi: 10.1021/jacs.6b02513
J.P. Mayer, J.R. Heil, J. Zhang, M.C. Munson, Tetrahedron Lett. 36(1995) 7387-7390.
doi: 10.1016/0040-4039(95)01548-5
Y. Wang, D.H. Chou, Angew. Chem. Int. Ed. 54(2015) 10931-10934.
doi: 10.1002/anie.201503975
K. Hu, H. Geng, Q. Zhang, et al., Angew. Chem. Int. Ed. 55(2016) 8013-8017.
doi: 10.1002/anie.201602806
P.J. Knerr, A. Tzekou, D. Ricklin, et al., ACS Chem. Biol. 6(2011) 753-760.
doi: 10.1021/cb2000378
B. Zhao, D. Yang, J.H. Wong, et al., ChemBioChem 17(2016) 1416-1420.
doi: 10.1002/cbic.v17.15
Z.V.F. Wright, S. McCarthy, R. Dickman, et al., J. Am. Chem. Soc. 139(2017) 13063-13075.
doi: 10.1021/jacs.7b06506
C.M.B.K. Kourra, N. Cramer, Chem. Sci. 7(2016) 7007-7012.
doi: 10.1039/C6SC02285E
H.J. Reich, R.J. Hondal, ACS Chem. Biol. 11(2016) 821-841.
doi: 10.1021/acschembio.6b00031
A.D. de Araujo, M. Mobli, J. Castro, et al., Nat. Commun. 5(2014) 3165.
doi: 10.1038/ncomms4165
A.D. de Araujo, M. Mobli, G.F. King, P.F. Alewood, Angew. Chem. Int. Ed. 51(2012) 10298-10302.
doi: 10.1002/anie.201204229
A.D. de Araujo, B. Callaghan, S.T. Nevin, et al., Angew. Chem. Int. Ed. 50(2011) 6527-6529.
doi: 10.1002/anie.v50.29
M. Mobli, A.D. de Araújo, L.K. Lambert, et al., Angew. Chem. Int. Ed. 48(2009) 9312-9314.
doi: 10.1002/anie.v48:49
M. Muttenthaler, S.T. Nevin, A.A. Grishin, et al., J. Am. Chem. Soc. 132(2010) 3514-3522.
doi: 10.1021/ja910602h
N.E. Shepherd, H.N. Hoang, G. Abbenante, D.P. Fairlie, J. Am. Chem. Soc. 127(2005) 2974-2983.
doi: 10.1021/ja0456003
H.N. Hoang, R.W. Driver, R.L. Beyer, et al., Angew. Chem. Int. Ed. 55(2016) 8275-8279.
doi: 10.1002/anie.201602079
H. Zhao, Q.S. Liu, H. Geng, et al., Angew. Chem. Int. Ed. 55(2016) 12088-12093.
doi: 10.1002/anie.201606833
Y. Tian, X. Zeng, J. Li, et al., Chem. Sci. 8(2017) 7576-7581.
doi: 10.1039/C7SC03614K
H. Zhao, Y. Jiang, Y. Tian, et al., Org. Biomol. Chem. 15(2017) 459-464.
doi: 10.1039/C6OB02501C
B. Hargittai, N.A. Solé, D.R. Groebe, S.N. Abramson, G. Barany, J. Med. Chem. 43(2000) 4787-4792.
doi: 10.1021/jm990635c
K.K. Khoo, M.J. Wilson, B.J. Smith, et al., J. Med. Chem. 54(2011) 7558-7566.
doi: 10.1021/jm200839a
C.W. Tornfe, C. Christensen, M. Meldal, J. Org. Chem. 67(2002) 3057-3064.
doi: 10.1021/jo011148j
V.V. Rostovtsev, G.L. Green, V.V. Fokin, K.B. Sharpless, Angew. Chem. Int. Ed. 41(2002) 2596-2599.
doi: 10.1002/(ISSN)1521-3773
M. Fmpting, O. Avrutina, R. Meusinger, et al., Angew. Chem. Int. Ed. 50(2011) 5207-5211.
doi: 10.1002/anie.v50.22
S. Pacifico, A. Kerckhoffs, A.J.Fallow, et al., Org. Biomol. Chem.15(2017) 4704-4710.
doi: 10.1039/C7OB00959C
K. Holland-Nell, M. Meldal, Angew. Chem. Int. Ed. 50(2011) 5204-5206.
doi: 10.1002/anie.v50.22
A. Gori, C.I.A. Wang, P.J. Harvey, et al., Angew. Chem. Int. Ed. 54(2015) 1361-1364.
doi: 10.1002/anie.201409678
M. Empting, O. Avrutina, R. Meusinger, et al., Angew. Chem. Int. Ed. 50(2011) 5207-5211.
doi: 10.1002/anie.v50.22
A.M. Spokoyny, Y. Zou, J.J. Ling, et al., J. Am. Chem. Soc.135(2013) 5946-5949.
doi: 10.1021/ja400119t
Y. Zheng, L. Zhai, Y. Zhao, C. Wu, J. Am. Chem. Soc. 137(2015) 15094-15097.
doi: 10.1021/jacs.5b10779
W. Liu, Y. Zheng, X. Kong, et al., Angew. Chem. Int. Ed. 56(2017) 4458-4463.
doi: 10.1002/anie.201610942
Y. Chen, T. Li, J. Li, et al., Org. Biomol. Chem. 15(2017) 1921-1929.
doi: 10.1039/C6OB02786E
T. Lühmann, S.K. Mong, M.D. Simon, L. Meinel, B.L. Pentelute, Org. Biomol. Chem. 14(2016) 3345-3349.
doi: 10.1039/C6OB00208K
S. Rapireddy, L. Nhon, R.E. Meehan, et al., J. Am. Chem. Soc.134(2012) 4041-4044.
doi: 10.1021/ja211867j
J.A. Getz, O. Cheneval, D.J. Craik, P.S. Daugherty, ACS Chem. Biol. 8(2013) 1147-1154.
doi: 10.1021/cb4000585
Y.P. Chang, J. Banerjee, C. Dowell, et al., J. Med. Chem. 57(2014) 3511-3521.
doi: 10.1021/jm500183r
R. Zhao, H. Dai, N. Mendelman, et al., Proc. Natl. Acad. Sci. U. S. A. 112(2015) E7013-7021.
doi: 10.1073/pnas.1514728112
J.S. Zheng, S. Tang, Y.C. Huang, L. Liu, Acc. Chem. Res. 46(2013) 2475-2484.
doi: 10.1021/ar400012w
Y.C. Huang, G.M. Fang, L. Liu, Natl. Sci. Rev. 3(2016) 107-116.
doi: 10.1093/nsr/nwv072
J.B. Li, S. Tang, J.S. Zheng, C.L. Tian, L. Liu, Acc. Chem. Res. 50(2017) 1143-1153.
doi: 10.1021/acs.accounts.7b00001
B. Yan, L. Ye, W. Xu, L. Liu, Bioorg. Med. Chem. 25(2017) 4953-4965.
doi: 10.1016/j.bmc.2017.05.020
B. Farrow, M. Wong, J. Malette, et al., Angew. Chem. Int. Ed. 54(2015) 7114-7119.
doi: 10.1002/anie.201502451
Z. Zhu, A. Shaginian, L.S.C. Grady, et al., ACS Chem. Biol. 13(2018) 53-59.
doi: 10.1021/acschembio.7b00852
Shuying Li , Weiwei ZhuGe , Xuan Sun , Chongzhen Sun , Zhaojun Liu , Chenghe Xiong , Min Xiao , Guofeng Gu . Convergent synthesis and immunological study of oligosaccharide derivatives related to galactomannan from Antrodia cinnamomea. Chinese Chemical Letters, 2024, 35(5): 109089-. doi: 10.1016/j.cclet.2023.109089
Xu-Hui Yue , Xiang-Wen Zhang , Hui-Min He , Lei Qiao , Zhong-Ming Sun . Synthesis, chemical bonding and reactivity of new medium-sized polyarsenides. Chinese Chemical Letters, 2024, 35(7): 108907-. doi: 10.1016/j.cclet.2023.108907
Ying Li , Long-Jie Wang , Yong-Kang Zhou , Jun Liang , Bin Xiao , Ji-Shen Zheng . An improved installation of 2-hydroxy-4-methoxybenzyl (iHmb) method for chemical protein synthesis. Chinese Chemical Letters, 2024, 35(5): 109033-. doi: 10.1016/j.cclet.2023.109033
Xiaoli Deng , Xiangchao Lu , Yang Cao , Qianjin Chen . Electrochemical imaging uncovers the heterogeneity of HER activity by sulfur vacancies in molybdenum disulfide monolayer. Chinese Chemical Letters, 2025, 36(3): 110379-. doi: 10.1016/j.cclet.2024.110379
Weiyu Chen , Zenghui Li , Chenguang Zhao , Lisha Zha , Junfeng Shi , Dan Yuan . Enzyme-modulate conformational changes in amphiphile peptide for selectively cell delivery. Chinese Chemical Letters, 2024, 35(12): 109628-. doi: 10.1016/j.cclet.2024.109628
Xiaofang Luo , Ye Wu , Xiaokun Zhang , Min Tang , Feiye Ju , Zuodong Qin , Gregory J Duns , Wei-Dong Zhang , Jiang-Jiang Qin , Xin Luan . Peptide-based strategies for overcoming multidrug-resistance in cancer therapy. Chinese Chemical Letters, 2025, 36(1): 109724-. doi: 10.1016/j.cclet.2024.109724
Ping Wang , Ting Wang , Ming Xu , Ze Gao , Hongyu Li , Bowen Li , Yuqi Wang , Chaoqun Qu , Ming Feng . Keplerate polyoxomolybdate nanoball mediated controllable preparation of metal-doped molybdenum disulfide for electrocatalytic hydrogen evolution in acidic and alkaline media. Chinese Chemical Letters, 2024, 35(7): 108930-. doi: 10.1016/j.cclet.2023.108930
Xueling Yu , Lixing Fu , Tong Wang , Zhixin Liu , Na Niu , Ligang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167
Tiantian Long , Hongmei Luo , Jingbo Sun , Fengniu Lu , Yi Chen , Dong Xu , Zhiqin Yuan . Carbonization-engineered ultrafast chemical reaction on nanointerface. Chinese Chemical Letters, 2025, 36(3): 109728-. doi: 10.1016/j.cclet.2024.109728
Rui Wang , He Qi , Haijiao Zheng , Qiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215
Cheng-Yan Wu , Yi-Nan Gao , Zi-Han Zhang , Rui Liu , Quan Tang , Zhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649
Min Fu , Pan He , Sen Zhou , Wenqiang Liu , Bo Ma , Shiying Shang , Yaohao Li , Ruihan Wang , Zhongping Tan . An unexpected stereochemical effect of thio-substituted Asp in native chemical ligation. Chinese Chemical Letters, 2024, 35(8): 109434-. doi: 10.1016/j.cclet.2023.109434
Xianxu Chu , Lu Wang , Junru Li , Hui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105
Ali Dai , Zhiguo Zheng , Liusheng Duan , Jian Wu , Weiming Tan . Small molecule chemical scaffolds in plant growth regulators for the development of agrochemicals. Chinese Chemical Letters, 2025, 36(4): 110462-. doi: 10.1016/j.cclet.2024.110462
Jianhui Yin , Wenjing Huang , Changyong Guo , Chao Liu , Fei Gao , Honggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244
Chuanfeng Fan , Jian Gao , Yingkai Gao , Xintong Yang , Gaoning Li , Xiaochun Wang , Fei Li , Jin Zhou , Haifeng Yu , Yi Huang , Jin Chen , Yingying Shan , Li Chen . A non-peptide-based chymotrypsin-targeted long-wavelength emission fluorescent probe with large Stokes shift and its application in bioimaging. Chinese Chemical Letters, 2024, 35(10): 109838-. doi: 10.1016/j.cclet.2024.109838
Min Huang , Ru Cheng , Shuai Wen , Liangtong Li , Jie Gao , Xiaohui Zhao , Chunmei Li , Hongyan Zou , Jian Wang . Ultrasensitive detection of microRNA-21 in human serum based on the confinement effect enhanced chemical etching of gold nanorods. Chinese Chemical Letters, 2024, 35(9): 109379-. doi: 10.1016/j.cclet.2023.109379
Lian Sun , Honglei Wang , Ming Ma , Tingting Cao , Leilei Zhang , Xingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188
Yongjian Li , Xinyu Zhu , Chenxi Wei , Youyou Fang , Xinyu Wang , Yizhi Zhai , Wenlong Kang , Lai Chen , Duanyun Cao , Meng Wang , Yun Lu , Qing Huang , Yuefeng Su , Hong Yuan , Ning Li , Feng Wu . Unraveling the chemical and structural evolution of novel Li-rich layered/rocksalt intergrown cathode for Li-ion batteries. Chinese Chemical Letters, 2024, 35(12): 109536-. doi: 10.1016/j.cclet.2024.109536
Xue Zheng , Jizhen Xie , Xing Zhang , Weiting Sun , Heyang Zhao , Yantuan Li , Cheng Wang . Corrigendum to "An overview of polymeric nanomicelles in clinical trials and on the market" [Chinese Chemical Letters 32 (2021) 243-257]. Chinese Chemical Letters, 2025, 36(2): 110545-. doi: 10.1016/j.cclet.2024.110545