Citation: Xiao Chang, Zhang Song-Lin. Mechanism for acetic acid-catalyzed ester aminolysis[J]. Chinese Chemical Letters, ;2018, 29(8): 1233-1236. doi: 10.1016/j.cclet.2018.01.003 shu

Mechanism for acetic acid-catalyzed ester aminolysis

  • Corresponding author: Zhang Song-Lin, slzhang@jiangnan.edu.cn
  • Received Date: 16 November 2017
    Revised Date: 20 December 2017
    Accepted Date: 27 December 2017
    Available Online: 5 August 2018

Figures(7)

  • This paper reports a computational study elucidating reaction mechanism for amide bond formation from esters and amines catalyzed by acetic acid. Two optional mechanisms (namely, classic stepwise and concerted acyl substitution mechanisms) have been studied. Calculation results establish the reaction energy profiles of both mechanisms and locate all the intermediates and transition states in both catalytic cycles. Our results propose that the concerted acyl substitution mechanism may be more likely wherein the formation of C-N bond and the cleavage of C-O bond occur concurrently without the need of rehybridization of the carbonyl carbon. This is also consistent with the fact that no significant racemization/epimerization were observed in the amide products when asymmetric esters and/or amines were used as the reactants, because concerted acyl substitution mechanism precludes the intermediacy of tetrahedral adducts and the accompanying generation/elimination of new chiral centers. Further discussion implies that the concerted acyl substitution mechanism may widely occur in related amidation reactions in the presence of different types of coupling reagents.
  • 加载中
    1. [1]

      (a) E. Valeur, M. Bradley, Chem. Soc. Rev. 38 (2009) 606-631
      (b) C. L. Allen, J. M. J. Williams, Chem. Soc. Rev. 40 (2011) 3405
      (c) V. R. Pattabiraman, J. W. Bode, Nature 480 (2011) 471-479
      (d) H. Lundberg, F. Tinnis, N. Selander, H. Adolfsson, Chem. Soc. Rev. 43 (2014) 2714-2742.

    2. [2]

      (a) A. El-Faham, F. Albericio, Chem. Rev. 111 (2011) 6557-6602
      (b) J. C. Sheehan, G. P. Hess, J. Am. Chem. Soc. 77 (1955) 1067-1068
      (c) G. Gawne, G. W. Kenner, R. C. Sheppard, J. Am. Chem. Soc. 91 (1969) 5669-5671
      (d) L. A. Carpino, P. Henklein, B. M. Foxman, et al., J. Org. Chem. 66 (2001) 5245-5247.

    3. [3]

      (a) J. W. Bode, R. M. Fox, K. D. Baucom, Angew. Chem. Int. Ed. 45 (2006) 1248-1252
      (b) B. Shen, D. M. Makley, J. N. Johnston, Nature 465 (2010) 1027-1032
      (c) W. Wu, Z. Zhang, L. S. Liebeskind, J. Am. Chem. Soc. 133 (2011) 14256-14259
      (d) G. M. Fang, Y. M. Li, F. Shen, et al., Angew. Chem. Int. Ed. 50 (2011) 7645-7649
      (e) J. F. Soulé, H. Miyamura, S. Kobayashi, J. Am. Chem. Soc. 133 (2011) 18550-18553
      (f) A. M. Dumas, G. A. Molander, J. W. Bode, Angew. Chem. Int. Ed. 51 (2012) 5683-5686
      (g) J. X. Wang, G. M. Fang, Y. He, et al., Angew. Chem. Int. Ed. 54 (2015) 2194-2198
      (h) J. Li, M. J. Lear, Y. Kawamoto, et al., Angew. Chem. Int. Ed. 54 (2015) 12986-12990
      (i) H. Noda, J. W. Bode, J. Am. Chem. Soc. 137 (2015) 3958-3966.

    4. [4]

      (a) C. G. McPherson, N. Caldwell, C. Jamieson, I. Simpson, A. J. B. Watson, Org. Biomol. Chem. 15 (2017) 3507-3518
      (b) C. Sabot, K. A. Kumar, S. Meunier, C. Mioskowski, Tetrahedron Lett. 48 (2007) 3863-3866
      (c) N. Caldwell, C. Jamieson, I. Simpson, A. J. B. Watson, Chem. Commun. 51 (2015) 9495-9498.

    5. [5]

      D.D.S. Sharley, J.M.J. Williams, Chem. Commun. 53(2017) 2020-2023.  doi: 10.1039/C6CC09023K

    6. [6]

      H. Charville, D.A. Jackson, G. Hodges, A. Whiting, M.R. Wilson, Eur. J. Org. Chem. (2011) 5981-5990.
       

    7. [7]

      (a) T. Krause, S. Baader, B. Erb, L. J. Gooßen, Nat. Commun. 7 (2016) 11732
      (b) L. Hu, S. Xu, Z. Zhao, et al., J. Am. Chem. Soc. 138 (2016) 13135-13138.

    8. [8]

      S.L. Zhang, H.X. Wan, Z.Q. Deng, Org. Biomol. Chem. 15(2017) 6367-6374.  doi: 10.1039/C7OB01378G

    9. [9]

      M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 09, Revision D. 01, Gaussian, Inc., Wallingford, CT, 2013.

    10. [10]

      (a) A. D. Becke, J. Chem. Phys. 98 (1993) 5648-5652
      (b) C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 37 (1988) 785-789.

    11. [11]

      M. Cossi, N. Rega, G. Scalmani, V. Barone, J. Compt. Chem. 24(2003) 669-681.  doi: 10.1002/jcc.10189

    12. [12]

      (a) J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev. 105 (2005) 2999-3093
      (b) Y. Fu, L. Liu, R. Q. Li, R. Liu, Q. X. Guo, J. Am. Chem. Soc. 126 (2004) 814-822.

    13. [13]

      (a) C. Gonzalez, H. B. Schlegel, J. Phys. Chem. 94 (1990) 5523-5527
      (b) K. Fukui, Acc. Chem. Res. 14 (1981) 363-368.

    14. [14]

      G.W. Anderson, F. Callahan, J. Am. Chem. Soc. 80(1958) 2902-2903.  doi: 10.1021/ja01544a077

  • 加载中
    1. [1]

      Jia FuShilong ZhangLirong LiangChunyu DuZhenqiang YeGuangming Chen . PEDOT-based thermoelectric composites: Preparation, mechanism and applications. Chinese Chemical Letters, 2024, 35(9): 109804-. doi: 10.1016/j.cclet.2024.109804

    2. [2]

      Jinhui XuYanting ZhangKecheng WenXinyu WangZhiwei YangYuan HuangGuozhong ZhengLupeng HuangJing Zhang . Enhanced removal of polystyrene nanoplastics by air flotation modified by dodecyltrimethylammonium chloride: Performance and mechanism. Chinese Chemical Letters, 2025, 36(5): 110240-. doi: 10.1016/j.cclet.2024.110240

    3. [3]

      Liangbo ZhangJun ChengYahui ShiKunjie HouQi AnJingyi LiBaohui CuiFei Chen . Efficient removal of tetracycline hydrochloride by ZnO/HNTs composites under visible light: Kinetics, degradation pathways and mechanism. Chinese Chemical Letters, 2025, 36(7): 110400-. doi: 10.1016/j.cclet.2024.110400

    4. [4]

      Linghui ZouMeng ChengKaili HuJianfang FengLiangxing Tu . Vesicular drug delivery systems for oral absorption enhancement. Chinese Chemical Letters, 2024, 35(7): 109129-. doi: 10.1016/j.cclet.2023.109129

    5. [5]

      Xiaoning LiQuanyu ShiMeng LiNingxin SongYumeng XiaoHuining XiaoTony D. JamesLei Feng . Functionalization of cellulose carbon dots with different elements (N, B and S) for mercury ion detection and anti-counterfeit applications. Chinese Chemical Letters, 2024, 35(7): 109021-. doi: 10.1016/j.cclet.2023.109021

    6. [6]

      Shaojie DengPeihua MaQinghong BaiXin Xiao . The transformation of nor-seco-cucurbit[10]uril to cucurbit[5]uril and cucurbit[8]uril controlled by its own concentration. Chinese Chemical Letters, 2025, 36(2): 109878-. doi: 10.1016/j.cclet.2024.109878

    7. [7]

      Weidan MengYanbo ZhouYi Zhou . Green innovation unleashed: Harnessing tungsten-based nanomaterials for catalyzing solar-driven carbon dioxide conversion. Chinese Chemical Letters, 2025, 36(2): 109961-. doi: 10.1016/j.cclet.2024.109961

    8. [8]

      Ming-Yi SunLu ZhangYa LiChong-Chen WangPeng WangXueying RenXiao-Hong Yi . Recovering Ag+ with nano-MOF-303 to form Ag/AgCl/MOF-303 photocatalyst: The role of stored Cl ions. Chinese Chemical Letters, 2025, 36(2): 110035-. doi: 10.1016/j.cclet.2024.110035

    9. [9]

      Li LiXue KeShan WangZhuo JiangYuzheng GuoChunguang Kuai . Antioxidative strategies of 2D MXenes in aqueous energy storage system. Chinese Chemical Letters, 2025, 36(5): 110423-. doi: 10.1016/j.cclet.2024.110423

    10. [10]

      Hui LiuBaoying XiaoYaming ZhaoWei WangQiong Jia . Adsorption of heavy metals with hyper crosslinked polymers: Progress, challenges and perspectives. Chinese Chemical Letters, 2025, 36(8): 110619-. doi: 10.1016/j.cclet.2024.110619

    11. [11]

      Meixin WangYizhi ZhangShanshan LiuXiao Shen . Synthesis of rigidified cyclohexanes enabled by visible-light-induced trifluoroacetylsilane-mediated [2 + 2] cycloaddition of cyclopropenes. Chinese Chemical Letters, 2025, 36(8): 110758-. doi: 10.1016/j.cclet.2024.110758

    12. [12]

      Tingting DuSiyu LuZongnan ZhuMei ZhuYan ZhangJian ZhangJixiang Chen . Pyrazole derivatives: Recent advances in discovery and development of pesticides. Chinese Chemical Letters, 2025, 36(9): 110912-. doi: 10.1016/j.cclet.2025.110912

    13. [13]

      Tong TongLezong ChenSiying WuZhong CaoYuanbin SongJun Wu . Establishment of a leucine-based poly(ester amide)s library with self-anticancer effect as nano-drug carrier for colorectal cancer treatment. Chinese Chemical Letters, 2024, 35(12): 109689-. doi: 10.1016/j.cclet.2024.109689

    14. [14]

      Yixin ZhangTing WangJixiang ZhangPengyu LuNeng ShiLiqiang ZhangWeiran ZhuNongyue He . Formation mechanism for stable system of nanoparticle/protein corona and phospholipid membrane. Chinese Chemical Letters, 2024, 35(4): 108619-. doi: 10.1016/j.cclet.2023.108619

    15. [15]

      Xibei TanRongrong WangNaif Abdullah Al-DhabiBin WangRongfan ChenQian ZhangDao ZhouWangwang TangHongyu Wang . Exploring the regulation mechanism of signaling molecules on algal-bacterial granular sludge through different N-acyl-homoserine lactones. Chinese Chemical Letters, 2025, 36(7): 110515-. doi: 10.1016/j.cclet.2024.110515

    16. [16]

      Tong Zhou Liyi Xie Chuyu Liu Xiyan Zheng Bao Li . Between Sobriety and Intoxication: The Fascinating Journey of Sauce-Flavored Latte. University Chemistry, 2024, 39(9): 55-58. doi: 10.12461/PKU.DXHX202312048

    17. [17]

      Yubang Li Xixi Hu Daiqian Xie . The microscopic formation mechanism of O + H2 products from photodissociation of H2O. Chinese Journal of Structural Chemistry, 2024, 43(5): 100274-100274. doi: 10.1016/j.cjsc.2024.100274

    18. [18]

      Yuwen ZhuXiang DengYan WuBaode ShenLingyu HangYuye XueHailong Yuan . Formation mechanism of herpetrione self-assembled nanoparticles based on pH-driven method. Chinese Chemical Letters, 2025, 36(1): 109733-. doi: 10.1016/j.cclet.2024.109733

    19. [19]

      Xiaotao JinYanlan WangYingping HuangDi HuangXiang Liu . Percarbonate activation catalyzed by nanoblocks of basic copper molybdate for antibiotics degradation: High performance, degradation pathways and mechanism. Chinese Chemical Letters, 2024, 35(10): 109499-. doi: 10.1016/j.cclet.2024.109499

    20. [20]

      Qiang LuoJinfeng SunZhibo LiBin LiuJianxun Ding . Thermo-sensitive poly(amino acid) hydrogel mediates cytoprotection through an antioxidant mechanism. Chinese Chemical Letters, 2025, 36(7): 110433-. doi: 10.1016/j.cclet.2024.110433

Metrics
  • PDF Downloads(2)
  • Abstract views(1681)
  • HTML views(50)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return