Citation: Dong Beibei, Liu Taifeng, Li Can, Zhang Fuxiang. Species, engineering and characterizations of defects in TiO2-based photocatalyst[J]. Chinese Chemical Letters, ;2018, 29(5): 671-680. doi: 10.1016/j.cclet.2017.12.002 shu

Species, engineering and characterizations of defects in TiO2-based photocatalyst


  • Author Bio:


    Prof. Fuxiang Zhang earned his bachelor's degree (1999), Ph.D. (2004) and then worked as the faculty at Nankai University. In September 2007, he began to pursue his first postdoctoral research at the University of Pierre & Marrie Curie, in France. From July 2008 to September 2011, he worked as Postdoc at the University of Tokyo. From Oct. 2011 to now, he has been working at Dalian Institute of Chemical Physics (DICP) to develop novel photocatalytic materials with wide visible light utilization as well as its fabrication of efficient Z-scheme overall water splitting systems for hydrogen production. To date, he has published over 70 SCI papers in some peerreviewed journals such as Nat. Commun., J. Am. Chem. Soc., Angew. Chem. Int. Ed., Chem. Sci. and ACS Catal. etc. with total cited times of over 4000
  • Corresponding author: Zhang Fuxiang, fxzhang@dicp.ac.cn
  • Received Date: 18 October 2017
    Revised Date: 10 November 2017
    Accepted Date: 18 October 2017
    Available Online: 7 May 2017

Figures(15)

  • Light absorption, charge separation and surface reaction are considered as the main processes of photocatalysis on one semiconductor, and all of them are demonstrated to be related to the defect states of photocatalysts. This paper will choose TiO2 as model photocatalyst to introduce some basic concepts and strategies related to defects and methods developed to characterize defects in the past decades. Meanwhile, such strategies as hydrogenation and metal/nonmetal doping into TiO2 will be introduced to extend utilization of solar spectrum and/or to provide active sites. On the contrary, the unfavorable effect of defects such as acting as recombination centers of photogenerated carriers will also be introduced. Some typical methods to characterize the properties of defects are summarized, which contain electron paramagnetic resonance (EPR), photoluminescence technique (PL), positron annihilation spectroscopy (PAS), and so on. We do hope that this review will make a revealing effect on understanding to the functions of defects as well as construction of efficient photocatalytic systems in the future.
  • 加载中
    1. [1]

      (a) J. Nowotny, Energy Environ. Sci. 1 (2008) 565-572;
      (b) H. J. Yu, R. Shi, T. R. Zhang, et al., Adv. Mater. 29 (2017) 1605148;
      (c) Y. F. Zhao, X. D. Jia, T. R. Zhang, et al., Adv. Energy Mater. 6 (2016) 1501974.

    2. [2]

      J. Bisquert, A. Zaban, P. Salvador, J. Phys. Chem. B 106(2002) 8774-8782.  doi: 10.1021/jp026058c

    3. [3]

      (a) G. Adriaenssens, S. Baranovskii, Ö. Öktü, et al., Phys. Rev. B 51 (1995) 9661-9667;
      (b) J. Noolandi, Phys. Rev. B 16 (1977) 4466-4473;
      (c) F. W. Schmidlin, Phys. Rev. B 16 (1977) 2362-2385.

    4. [4]

      (a) A. Barzykin, M. Tachiya, J. Phys. Chem. B 106 (2002) 4356-4363;
      (b) D. C. Hurum, K. A. Gray, J. Phys. Chem. B 109 (2005) 977-980.

    5. [5]

      M.K. Nowotny, L.R. Sheppard, T. Bak, J. Nowotny, J. Phys. Chem. C 112(2008) 5275-5300.  doi: 10.1021/jp077275m

    6. [6]

      Y. Ma, X. Wang, C. Li, et al., Chem. Rev. 114(2014) 9987-10043.  doi: 10.1021/cr500008u

    7. [7]

      A. Fujishima, Nature 238(1972) 37-38.  doi: 10.1038/238037a0

    8. [8]

      (a) P. Zhang, M. Fujitsuka, T. Majima, J. Energy Chem. 25 (2016) 917-926;
      (b) W. Zhang, T. Zhou, J. Hong, R. Xu, J. Energy Chem. 25 (2016) 500-506;
      (c) C. Wu, Z. Gao, Y. Dai, et al., J. Energy Chem. 25 (2016) 726-733.

    9. [9]

      (a) M. Batzill, E. H. Morales, U. Diebold, Phys. Rev. Lett. 96 (2006) 026103;
      (b) M. Nowotny, T. Bak, J. Nowotny, J. Phys. Chem. B 110 (2006) 16270-16282.

    10. [10]

      (a) U. Diebold, Surf. Sci. Rep. 48 (2003) 53-229;
      (b) P. Kofstad, Oxid. Metal. 44 (1995) 3-27.

    11. [11]

      T. Bak, J. Nowotny, M. Nowotny, J. Phys. Chem. B 110(2006) 21560-21567.  doi: 10.1021/jp063700k

    12. [12]

      F. Kröger, H. Vink, J. Phys. Chem. Solids 5(1958) 208-223.  doi: 10.1016/0022-3697(58)90069-6

    13. [13]

      D. M. Smyth, The Defect Chemistry of Metal Oxides, Oxford University, 2000.

    14. [14]

      P. Wynblatt, R. McCune, J. Nowotny, L. Dufour, Surface and Near-Surface Chemistry of Oxide Materials, Elsevier, Amsterdam, 1988.

    15. [15]

      L.M. Peter, J. Li, R. Peat, J. Electroanal. Chem. 165(1984) 29-40.  doi: 10.1016/S0022-0728(84)80084-4

    16. [16]

      K. Maeda, N. Murakami, T. Ohno, J. Phys. Chem. C 118(2014) 9093-9100.  doi: 10.1021/jp502949q

    17. [17]

      (a) J. Nowotny, T. Bak, M. K. Nowotny, L. R. Sheppard, J. Phys. Chem. B 110 (2006) 18492-18495;
      (b) S. Polarz, J. Strunk, M. Driess, et al., Angew. Chem. Int. Ed. 45 (2006) 2965-2969.

    18. [18]

      (a) X. B. Chen, L. Liu, P. Y. Yu, S. S. Mao, Science 331 (2011) 746-750;
      (b) Y. Liu, L. Tian, X. B. Chen, et al., Sci. Bull. 62 (2017) 431-441.

    19. [19]

      G. Wang, H. Wang, Y. Li, et al., Nano Lett. 11(2011) 3026-3033.  doi: 10.1021/nl201766h

    20. [20]

      A. Naldoni, M. Allieta, V. Santo, et al., J. Am. Chem. Soc. 134(2012) 7600-7603.  doi: 10.1021/ja3012676

    21. [21]

      W. Wei, N. Yaru, L. Chunhua, X. Zhongzi, RSC Adv. 2(2012) 8286-8288.  doi: 10.1039/c2ra21049e

    22. [22]

      H. Liu, H. Ma, X.H. Bao, et al., Chemosphere 50(2003) 39-46.  doi: 10.1016/S0045-6535(02)00486-1

    23. [23]

      F. Zuo, L. Wang, P. Feng, et al., J. Am. Chem. Soc. 132(2010) 11856-11857.  doi: 10.1021/ja103843d

    24. [24]

      I. Justicia, P. Ordejón, A. Figueras, et al., Adv. Mater. 14(2002) 1399-1402.  doi: 10.1002/1521-4095(20021002)14:19<1399::AID-ADMA1399>3.0.CO;2-C

    25. [25]

      Z. Wang, C. Yang, M. Jiang, et al., Adv. Funct. Mater. 23(2013) 5444-5450.  doi: 10.1002/adfm.v23.43

    26. [26]

      Z. Zheng, B. Huang, H. Whangbo, et al., Chem. Commun. 48(2012) 5733-5735.  doi: 10.1039/c2cc32220j

    27. [27]

      (a) X. Yu, B. Kim, Y. K. Kim, ACS Catal. 3 (2013) 2479-2486;
      (b) M. Kong, Y. Li, X. Zhao, et al., J. Am Chem. Soc. 133 (2011) 16414-16417.

    28. [28]

      K.E. Karakitsou, X.E. Verykios, J. Phys. Chem. 97(1993) 1184-1189.  doi: 10.1021/j100108a014

    29. [29]

      J. Kiwi, M. Gratzel, J. Phys. Chem. C 90(1986) 637-640.  doi: 10.1021/j100276a031

    30. [30]

      S. Peng, Y. Li, S. Li, et al., Chem. Phys. 398(2004) 235-239.
       

    31. [31]

      W. Choi, A. Termin, M.R. Hoffmann, J. Phys. Chem. 98(1994) 13669-13679.  doi: 10.1021/j100102a038

    32. [32]

      T. Takata, K. Domen, J. Phys. Chem. C 113(2009) 19386-19388.  doi: 10.1021/jp908621e

    33. [33]

      W. Mu, J.M. Herrmann, P. Pichat, Catal. Lett. 3(1989) 73-84.  doi: 10.1007/BF00765057

    34. [34]

      (a) E. Borgarello, J. Kiwi, M. Visca, et al., J. Am. Chem. Soc. 104 (1982) 2996-3002;
      (b) A. K. Ghosh, H. P. Maruska, J. Electrochem. Soc. 124 (1977) 1516-1522;
      (c) H. P. Maruska, A. K. Ghosh, Sol. Energy Mater. 1 (1979) 237-247;
      (d) J. Zhu, Z. Deng, L. Zhang, et al., Appl. Catal B: Environ. 62 (2006) 329-335;
      (e) J. Choi, H. Park, M. R. Hoffmann, J. Phys. Chem. C 114 (2010) 783-792.

    35. [35]

      A. Mackor, G. Blasse, Chem. Phys. Lett. 77(1981) 6-8.  doi: 10.1016/0009-2614(81)85588-1

    36. [36]

      (a) J. M. Herrmann, J. Disdier, P. Pichat, Chem. Phys. Lett. 108 (1984) 618-622;
      (b) N. Serpone, D. Lawless, Langmuir 10 (1994) 643-652.

    37. [37]

      (a) J. Zhu, F. Chen, J. Zhang, H. Chen, M. Anpo, J. Photochem. Photobiol. A: Chem. 180 (2006) 196-204;
      (b) S. Klosek, D. Raftery, J. Phys. Chem. B 105 (2001) 2815-2819;
      (c) X. Wang, J. G. Li, T. Ishigaki, et al., J. Phys Chem. B 110 (2006) 6804-6809;
      (d) M. Litter, J. A. Navio, J. Photochem, Photobiol. A: Chem. 98 (1996) 171-181.

    38. [38]

      J.C.S. Wu, C.H. Chen, J. Photochem. Photobiol. A:Chem. 163(2004) 509-515.  doi: 10.1016/j.jphotochem.2004.02.007

    39. [39]

      Z. Luo, Q.H. Gao, J. Photochem. Photobiol. A:Chem. 63(1992) 367-375.  doi: 10.1016/1010-6030(92)85202-6

    40. [40]

      (a) R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 293 (2001) 269-271;
      (b) J. L. Gole, J. D. Stout, C. Burda, Y. Lou, X. Chen, J. Phys. Chem. B 108 (2004) 1230-1240;
      (c) P. G. Wu, C. H. Ma, J. K. Shang, Appl. Phys. A 81 (2005) 1411-1417.

    41. [41]

      (a) J. C. Yu, J. Yu, L. Zhang, et al., Chem. Mater. 14 (2002) 3808-3816;
      (b) J. G. Yu, C. Y. Jimmy, K. Iu, et al., J. Solid State Chem. 174 (2003) 372-380.

    42. [42]

      (a) T. Ohno, T. Mitsui, M. Matsumura, Chem. Lett. 32 (2003) 364-365;
      (b) T. Ohno, M. Akiyoshi, M. Matsumurac, et al., Appl. Catal. A: Gen. 265 (2004) 115-121;
      (c) T. Umebayashi, T. Yamaki, H. Itoh, K. Asai, Appl. Phys. Lett. 81 (2002) 454-456;
      (d) T. Umebayashi, T. Yamaki, S. Tanaka, K. Asai, Chem. Lett. 32 (2003) 330-331.

    43. [43]

      (a) W. Zhao, W. Ma, Z. Shuai, et al., J. Am. Chem. Soc. 126 (2004) 4782-4783;
      (b) D. Chen, D. Yang, Q. Wang, Z. Jiang, Ind. Eng. Chem. Res. 45 (2006) 4110-4116.

    44. [44]

      (a) S. U. M. Khan, M. Al-Shahry, W. B. Ingler, Science 297 (2002) 2243-2245;
      (b) S. Sakthivel, H. Kisch, Angew. Chem. Int. Ed. 42 (2003) 4908-4911;
      (c) H. Irie, Y. Watanabe, K. Hashimoto, Chem. Lett. 32 (2003) 772-773.

    45. [45]

      (a) L. Lin, W. Lin, Y. Zhu, B. Zhao, Y. Xie, Chem. Lett. 34 (2005) 284-285;
      (b) N. O. Gopal, H. H. Lo, S. C. Ke, et al., J. Phys. Chem. C 116 (2012) 16191-16197.

    46. [46]

      (a) O. Diwald, T. L. Thompson, J. T. Yates, et al., J. Phys. Chem. B 108 (2004) 6004-6008;
      (b) S. Yin, H. Yamaki, T. Sato, et al., Solid State Sci. 7 (2005) 1479-1485;
      (c) Y. Kuroda, T. Mori, S. Kittaka, et al., Langmuir 21 (2005) 8026-8034;
      (d) X. B. Chen, Y. B. Lou, J. L. Gole, et al., Adv. Funct. Mater. 15 (2005) 41-49;
      (e) C. Burda, Y. B. Lou, J. L. Gole, et al., Nano Lett. 3 (2003) 1049-1051;
      (f) S. Hoang, S. P. Berglund, C. B. Mullins, et al., J. Am. Chem. Soc. 134 (2012) 3659-3662.

    47. [47]

      (a) J. Ma, H. Wu, Y. Liu, H. He, J. Phys. Chem. C 118 (2014) 7434-7441;
      (b) Z. Lin, A. Orlov, R. M. Lambert, M. C. Payne, J. Phys. Chem. B 109 (2005) 20948-20952;
      (c) T. Ihara, M. Miyoshi, S. Sugihara, et al., Appl. Catal. B: Environ. 42 (2003) 403-409.

    48. [48]

      (a) J. Wang, D. N. Tafen, N. Wu, et al., J. Am. Chem. Soc. 131 (2009) 12290-12297;
      (b) S. Sakthivel, M. Janczarek, H. Kisch, J. Phys. Chem. B 108 (2004) 19384-19387;
      (c) H. Irie, Y. Watanabe, K. Hashimoto, J. Phys. Chem. B 107 (2003) 5483-5486.

    49. [49]

      (a) A. Nakada, S. Nishioka, K. Maeda, et al., J. Mater Chem. A 5 (2017) 11710-11719;
      (b) M. E. Kurtoglu, T. Longenbach, K. Sohlberg, Y. Gogotsi, J. Phys. Chem. C 115 (2011) 17392-17399;
      (c) M. Zou, L. Feng, M. H. Yang, et al., Nano Adv. 2 (2017) 36-44.

    50. [50]

      (a) D. Li, H. Haneda, S. Hishita, N. Ohashi, Chem. Mater. 17 (2005) 2596-2602;
      (b) S. In, A. Orlov, R. M. Lambert, et al., J. Am. Chem. Soc. 129 (2007) 13790-13791.

    51. [51]

      (a) W. J. Lo, Y. W. Chung, G. A. Somorjai, Surf. Sci. 71 (1978) 199-219;
      (b) M. A. Henderson, Surf. Sci. 355 (1996) 151-166.

    52. [52]

      (a) M. R. Hoffmann, S. T. Martin, W. Y. Choi, D. W. Bahnemann, Chem. Rev. 95 (1995) 69-96;
      (b) G. Li, N. M. Dimitrijevic, K. A. Gray, et al., J. Am. Chem. Soc. 130 (2008) 5402-5403;
      (c) A. Selloni, Nat. Mater. 7 (2008) 613-615.

    53. [53]

      X. Pan, Y.J. Xu, Appl. Catal. A:Gen. 459(2013) 34-40.  doi: 10.1016/j.apcata.2013.04.007

    54. [54]

      (a) X. Q. Gong, A. Selloni, J. Phys. Chem. B 109 (2005) 19560-19562;
      (b) A. Vittadini, A. Selloni, F. P. Rotzinger, M. Grätzel, Phys. Rev. Lett. 81 (1998) 2954-2957;
      (c) H. Xu, P. Reunchan, J. H. Ye, et al., Chem. Mater. 25 (2013) 405-411;
      (d) J. Pan, G. Liu, H. M. Cheng, et al., Angew. Chem. Int. Ed. 50 (2011) 2133-2137.

    55. [55]

      G. Liu, J.C. Yu, G.Q. Lu, H.M. Cheng, Chem. Commun. 47(2011) 6763-6783.  doi: 10.1039/c1cc10665a

    56. [56]

      J.G. Yu, H.G. Yu, W.K. Ho, et al., J. Phys. Chem. B 107(2003) 13871-13879.  doi: 10.1021/jp036158y

    57. [57]

      (a) M. J. Puska, C. Corbel, R. M. Nieminen, Phys. Rev. B 41 (1990) 9980-9993;
      (b) W. Shockley, W. Read Jr, Phys. Rev. 87 (1952) 835-842.

    58. [58]

      (a) S. Yang, L. E. Halliburton, A. Fujishima, et al., Appl. Phys. Lett. 94 (2009) 162114;
      (b) M. D'Arienzo, J. Carbajo, F. Morazzoni, et al., J. Am. Chem. Soc. 133 (2011) 17652-17661;
      (c) D. C. Hurum, A. G. Agrios, M. C. Thurnauer, et al., J. Electron. Spectrosc. Relat. Phenom. 150 (2006) 155-163;
      (d) J. B. Priebe, M. Karnahl, A. Brückner, et al., Angew. Chem. Int. Ed. 52 (2013) 11420-11424;
      (e) R. F. Howe, M. Graetzel, J. Phys. Chem. 91 (1987) 3906-3909;
      (f) R. Chong, J. Li, C. Li, et al., Chem. Commun. 50 (2014) 165-167;
      (g) R. Li, Y. Weng, C. Li, et al., Energy Environ. Sci. 8 (2015) 2377-2382;
      (h) R. Chong, J. Li, C. Li, et al., J. Catal. 314 (2014) 101-108.

    59. [59]

      D.C. Hurum, A.G. Agrios, K.A. Gray, J. Phys. Chem. B 107(2003) 4545-4549.  doi: 10.1021/jp0273934

    60. [60]

      F. Amano, M. Nakata, A. Yamamoto, T. Tanaka, J. Phys. Chem. C 120(2016) 6467-6474.
       

    61. [61]

      (a) S. Yang, L. E. Halliburton, A. Fujishima, et al., Appl. Phys. Lett. 94 (2009) 162114;
      (b) M. D'Arienzo, J. Carbajo, F. Morazzoni, et al., J. Am. Chem. Soc. 133 (2011) 17652-17661;
      (c) D. C. Hurum, A. G. Agrios, M. C. Thurnauer, et al., J. Electron. Spectrosc. Relat. Phenom. 150 (2006) 155-163;
      (d) J. B. Priebe, M. Karnahl, A. Brückner, et al., Angew. Chem. Int. Ed. 52 (2013) 11420-11424;
      (e) R. F. Howe, M. Graetzel, J. Phys. Chem. 91 (1987) 3906-3909;
      (f) R. Chong, J. Li, C. Li, et al., Chem. Commun. 50 (2014) 165-167;
      (g) R. Li, Y. Weng, C. Li, et al., Energy Environ. Sci. 8 (2015) 2377-2382;
      (h) R. Chong, J. Li, C. Li, et al., J. Catal. 314 (2014) 101-108.

    62. [62]

      (a) M. V. Dozzi, C. D'Andrea, E. Selli, et al., J. Phys. Chem. C 117 (2013) 25586-25595;
      (b) K. Fujihara, S. Izumi, T. Ohno, M. Matsumura, J. Photochem. Photobiol. A: Chem. 132 (2000) 99-104.

    63. [63]

      J.Y. Shi, J. Chen, C. Li, et al., J. Phys. Chem. C 111(2007) 693-699.  doi: 10.1021/jp065744z

    64. [64]

      (a) B. B. Dong, Y. Qi, C. Li, et al., Dalton Trans. 46 (2017) 10707-10713;
      (b) R. Plugaru, A. Cremades, J. Piqueras, J. Phys. Condens. Matter 16 (2003) S261-S268;
      (c) I. Fernández, A. Cremades, J. Piqueras, Semicond. Sci. Technol. 20 (2005) 239-243.

    65. [65]

      (a) G. Dlubek, R. Krause, Phys. Status Solidi 102 (1987) 443-479;
      (b) Y. Itoh, H. Murakami, Appl. Phys. A 58 (1994) 59-62.

    66. [66]

      X. Jiang, Y. Zhang, C. Pan, et al., J. Phys. Chem. C 116(2012) 22619-22624.  doi: 10.1021/jp307573c

    67. [67]

      (a) D. V. Lang, J. Appl. Phys. 45 (1974) 3023-3032;
      (b) T. Miyagi, T. Ogawa, T. Sato, et al., Jpn. J. Appl. Phys. 40 (2001) L404-L406.

    68. [68]

      (a) A. Yamakata, T. Ishibashi, H. Onishi, J. Phys. Chem. B 105 (2001) 7258-7262;
      (b) M. Zhu, Y. Mi, Y. X. Weng, et al., J. Phys. Chem. C 117 (2013) 18863-18869;
      (c) H. Zhao, Q. Zhang, Y. X. Weng, J. Phys. Chem. C 111 (2007) 3762-3769.

    69. [69]

      (a) A. Thomas, W. Flavell, F. Wiame, et al., Phys. Rev. B 75 (2007) 035105;
      (b) A. Thomas, W. Flavell, R. Hengerer, et al., Phys. Rev. B 67 (2003) 035110.

    70. [70]

      (a) X. Q. Gong, A. Selloni, M. Batzill, U. Diebold, Nat. Mater. 5 (2006) 665-670;
      (b) Y. He, O. Dulub, H. Cheng, A. Selloni, U. Diebold, Phys. Rev. Lett. 102 (2009) 106105.

    71. [71]

      P. Krüger, S. Bourgeois, A. Morgante, et al., Phys. Rev. Lett. 100(2008) 055501.  doi: 10.1103/PhysRevLett.100.055501

    72. [72]

      J. Boerio-Goates, S.J. Smith, B.F. Woodfield, et al., J. Phys. Chem. C 117(2013) 4544-4550.  doi: 10.1021/jp310993w

    73. [73]

      M. Henzler, Appl. Phys. A 34(1984) 205-214.  doi: 10.1007/BF00616574

    74. [74]

      W. Göpel, J. Anderson, G. Rocker, et al., Surf. Sci. 139(1984) 333-346.  doi: 10.1016/0039-6028(84)90054-2

  • 加载中
    1. [1]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    2. [2]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    3. [3]

      Tianli Hui Tao Zheng Xiaoluo Cheng Tonghui Li Rui Zhang Xianghai Meng Haiyan Liu Zhichang Liu Chunming Xu . A review of plasma treatment on nano-microstructure of electrochemical water splitting catalysts. Chinese Journal of Structural Chemistry, 2025, 44(3): 100520-100520. doi: 10.1016/j.cjsc.2025.100520

    4. [4]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    5. [5]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Boosting bulk charge transport of CuWO4 photoanodes via Cs doping for solar water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100207-100207. doi: 10.1016/j.cjsc.2023.100207

    6. [6]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    7. [7]

      Haijing CuiWeihao ZhuChuning YueMing YangWenzhi RenAiguo Wu . Recent progress of ultrasound-responsive titanium dioxide sonosensitizers in cancer treatment. Chinese Chemical Letters, 2024, 35(10): 109727-. doi: 10.1016/j.cclet.2024.109727

    8. [8]

      Bingke ZhangDongbo WangJiamu CaoWen HeGang LiuDonghao LiuChenchen ZhaoJingwen PanSihang LiuWeifeng ZhangXuan FangLiancheng ZhaoJinzhong Wang . Tuning Stark effect by defect engineering on black titanium dioxide mesoporous spheres for enhanced hydrogen evolution. Chinese Chemical Letters, 2024, 35(11): 110254-. doi: 10.1016/j.cclet.2024.110254

    9. [9]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    10. [10]

      Yan FanJiao TanCuijuan ZouXuliang HuXing FengXin-Long Ni . Unprecedented stepwise electron transfer and photocatalysis in supramolecular assembly derived hybrid single-layer two-dimensional nanosheets in water. Chinese Chemical Letters, 2025, 36(4): 110101-. doi: 10.1016/j.cclet.2024.110101

    11. [11]

      Wenhao ChenJian DuHanbin ZhangHancheng WangKaicheng XuZhujun GaoJiaming TongJin WangJunjun XueTing ZhiLonglu Wang . Surface treatment of GaN nanowires for enhanced photoelectrochemical water-splitting. Chinese Chemical Letters, 2024, 35(9): 109168-. doi: 10.1016/j.cclet.2023.109168

    12. [12]

      Lina WangHairu WangQian BuQiong MeiJunbo ZhongBo BaiQizhao Wang . Al-O bridged NiFeOx/BiVO4 photoanode for exceptional photoelectrochemical water splitting. Chinese Chemical Letters, 2025, 36(4): 110139-. doi: 10.1016/j.cclet.2024.110139

    13. [13]

      Entian CuiYulian LuZhaoxia LiZhilei ChenChengyan GeJizhou Jiang . Interfacial B-O bonding modulated S-scheme B-doped N-deficient C3N4/O-doped-C3N5 for efficient photocatalytic overall water splitting. Chinese Chemical Letters, 2025, 36(1): 110288-. doi: 10.1016/j.cclet.2024.110288

    14. [14]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    15. [15]

      Qiang Zhang Weiran Gong Huinan Che Bin Liu Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205

    16. [16]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    17. [17]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    18. [18]

      Jiangqi Ning Junhan Huang Yuhang Liu Yanlei Chen Qing Niu Qingqing Lin Yajun He Zheyuan Liu Yan Yu Liuyi Li . Alkyl-linked TiO2@COF heterostructure facilitating photocatalytic CO2 reduction by targeted electron transport. Chinese Journal of Structural Chemistry, 2024, 43(12): 100453-100453. doi: 10.1016/j.cjsc.2024.100453

    19. [19]

      Jiaqi Ma Lan Li Yiming Zhang Jinjie Qian Xusheng Wang . Covalent organic frameworks: Synthesis, structures, characterizations and progress of photocatalytic reduction of CO2. Chinese Journal of Structural Chemistry, 2024, 43(12): 100466-100466. doi: 10.1016/j.cjsc.2024.100466

    20. [20]

      Yanghanbin Zhang Dongxiao Wen Wei Sun Jiahe Peng Dezhong Yu Xin Li Yang Qu Jizhou Jiang . State-of-the-art evolution of g-C3N4-based photocatalytic applications: A critical review. Chinese Journal of Structural Chemistry, 2024, 43(12): 100469-100469. doi: 10.1016/j.cjsc.2024.100469

Metrics
  • PDF Downloads(8)
  • Abstract views(3283)
  • HTML views(88)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return