A review of transition metal chalcogenide/graphene nanocomposites for energy storage and conversion
- Corresponding author: Zhang Qiang, zhang-qiang@mails.tsinghua.edu.cn; zhangqiangflotu@mail.tsinghua.edu.cn
Citation:
Yuan Hong, Kong Long, Li Tao, Zhang Qiang. A review of transition metal chalcogenide/graphene nanocomposites for energy storage and conversion[J]. Chinese Chemical Letters,
;2017, 28(12): 2180-2194.
doi:
10.1016/j.cclet.2017.11.038
H. Wang, Q.L. Zhu, R. Zou, et al., Chem 2(2017) 52-80.
doi: 10.1016/j.chempr.2016.12.002
X. Li, Y. Chen, H. Huang, et al., Energy Storage Mater. 5(2016) 58-92.
doi: 10.1016/j.ensm.2016.06.002
J.B. Goodenough, Energy Storage Mater. 1(2015) 158-161.
doi: 10.1016/j.ensm.2015.07.001
J. Xiong, C. Han, Z. Li, et al., Sci. Bull. 60(2015) 2083-2090.
doi: 10.1007/s11434-015-0972-z
W. Li, J. Liu, D. Zhao, Nat. Rev. Mater. 1(2016) 16023.
doi: 10.1038/natrevmats.2016.23
X.Y. Shan, F. Li, D.W. Wang, et al., Energy Storage Mater. 3(2016) 66-68.
doi: 10.1016/j.ensm.2016.01.005
X.B. Cheng, C. Yan, X. Chen, et al., Chem 2(2017) 258-270.
doi: 10.1016/j.chempr.2017.01.003
X. Zhang, X. Cheng, Q. Zhang, J. Energy Chem. 25(2016) 967-984.
doi: 10.1016/j.jechem.2016.11.003
T.Y. Ma, S. Dai, S.Z. Qiao, Mater. Today 19(2016) 265-273.
doi: 10.1016/j.mattod.2015.10.012
T. Sheng, Y.F. Xu, Y.X. Jiang, et al., Acc. Chem. Res. 49(2016) 2569-2577.
doi: 10.1021/acs.accounts.6b00485
X.Y. Yu, L. Yu, X.W.D. Lou, Adv. Energy Mater. 6(2016) 1501333.
doi: 10.1002/aenm.201501333
X. Rui, H. Tan, Q. Yan, Nanoscale 6(2014) 9889-9924.
doi: 10.1039/C4NR03057E
X. Huang, Z. Zeng, H. Zhang, Chem. Soc. Rev. 42(2013) 1934-1946.
doi: 10.1039/c2cs35387c
H. Li, Y. Su, W. Sun, et al., Adv. Funct. Mater. 26(2016) 8345-8353.
doi: 10.1002/adfm.201601631
K. Zhang, M. Park, L. Zhou, et al., Adv. Funct. Mater. 26(2016) 6728-6735.
doi: 10.1002/adfm.v26.37
F. Zhang, C. Xia, J. Zhu, et al., Adv. Energy Mater. 6(2016) 1601188.
doi: 10.1002/aenm.v6.22
Y. Wu, X. Li, Chin. Chem. Lett. 27(2016) 927-932.
doi: 10.1016/j.cclet.2016.04.010
S.L. Yang, B.H. Zhou, M. Lei, et al., Chin. Chem. Lett. 26(2015) 1293-1297.
doi: 10.1016/j.cclet.2015.05.051
C. Zhu, P. Kopold, W. Li, et al., Adv. Sci. 2(2015) 1500200.
doi: 10.1002/advs.201500200
X. Xu, W. Liu, Y. Kim, et al., Nano Today 9(2014) 604-630.
doi: 10.1016/j.nantod.2014.09.005
T. Li, X. Li, Z. Wang, et al., J. Power Sources 342(2017) 495-503.
doi: 10.1016/j.jpowsour.2016.12.095
Y. Mou, C. Wang, L. Zhan, et al., New Carbon Mater. 31(2016) 609-614.
X. Liu, J.Q. Huang, Q. Zhang, et al., Adv. Mater. 29(2017) 1601759.
doi: 10.1002/adma.v29.20
P. Ganesan, M. Prabu, J. Sanetuntikul, et al., ACS Catal. 5(2015) 3625-3637.
doi: 10.1021/acscatal.5b00154
X. Zou, Y. Zhang, Chem. Soc. Rev. 44(2015) 5148-5180.
doi: 10.1039/C4CS00448E
A. Kagkoura, T. Skaltsas, N. Tagmatarchis, J. Chem Eur 23(2017) 12967-12979.
doi: 10.1002/chem.v23.53
K.S. Novoselov, A.K. Geim, S.V. Morozov, et al., Science 306(2004) 666-669.
doi: 10.1126/science.1102896
G.L. Tian, Q. Zhang, M.Q. Zhao, et al., AIChE J. 61(2015) 747-755.
doi: 10.1002/aic.v61.3
Y. Gao, Y. Zhang, Y. Zhang, et al., J. Energy Chem. 25(2016) 49-54.
doi: 10.1016/j.jechem.2015.11.011
F. Bonaccorso, L. Colombo, G. Yu, et al., Science 347(2015) 1246501.
doi: 10.1126/science.1246501
A.K. Geim, K.S. Novoselov, Nat. Mater. 6(2007) 183-191.
doi: 10.1038/nmat1849
C. Lee, X. Wei, J.W. Kysar, et al., Science 321(2008) 385-388.
doi: 10.1126/science.1157996
A.K. Geim, Science 324(2009) 1530-1534.
doi: 10.1126/science.1158877
Z. Xiang, Q. Dai, J.F. Chen, et al., Adv. Mater. 28(2016) 6253-6261.
doi: 10.1002/adma.v28.29
M.F. El-Kady, Y. Shao, R.B. Kaner, Nat. Rev. Mater. 1(2016) 16033.
doi: 10.1038/natrevmats.2016.33
G. Zhao, X. Li, M. Huang, et al., Chem. Soc. Rev. 46(2017) 4417-4449.
doi: 10.1039/C7CS00256D
Z. Lai, Y. Chen, C. Tan, et al., Chem 1(2016) 59-77.
doi: 10.1016/j.chempr.2016.06.011
M. Wang, Y.X. Xu, Chin. Chem. Lett. 27(2016) 1437-1444.
doi: 10.1016/j.cclet.2016.06.048
J. Ji, Y. Li, W. Peng, et al., Adv. Mater. 27(2015) 5264-5279.
doi: 10.1002/adma.201501115
H.J. Qiu, L. Liu, Y. Wang, Sci. Bull. 61(2016) 443-450.
doi: 10.1007/s11434-016-1024-z
H.J. Peng, D.W. Wang, J.Q. Huang, et al., Adv. Sci. 3(2016) 1500268.
doi: 10.1002/advs.201500268
F. Su, L. Xie, G. Shu, et al., New Carbon Mater. 31(2016) 363-377.
W. Lv, Z. Li, Y. Deng, et al., Energy Storage Mater. 2(2016) 107-138.
doi: 10.1016/j.ensm.2015.10.002
K. Chen, S. Song, F. Liu, et al., Chem. Soc. Rev. 44(2015) 6230-6257.
doi: 10.1039/C5CS00147A
L. Peng, Y. Zhu, H. Li, et al., Small 12(2016) 6183-6199.
doi: 10.1002/smll.201602109
R. Raccichini, A. Varzi, S. Passerini, et al., Nat. Mater. 14(2015) 271-279.
doi: 10.1038/nmat4170
Y. Ma, H. Chang, M. Zhang, et al., Adv. Mater. 27(2015) 5296-5308.
doi: 10.1002/adma.201501622
X.B. Cheng, R. Zhang, C.Z. Zhao, et al., Adv. Sci. 3(2016) 1500213.
doi: 10.1002/advs.201500213
Y. Zhu, S.H. Choi, X. Fan, et al., Adv. Energy Mater. 7(2017) 1601578.
doi: 10.1002/aenm.201601578
L. Yue, J. Ma, J. Zhang, et al., Energy Storage Mater. 5(2016) 139-164.
doi: 10.1016/j.ensm.2016.07.003
J. Lu, T. Wu, K. Amine, Nat. Energy 2(2017) 17011.
doi: 10.1038/nenergy.2017.11
Z.D. Huang, K. Zhang, T.T. Zhang, et al., Energy Storage Mater. 5(2016) 205-213.
doi: 10.1016/j.ensm.2016.08.001
S. Nam, S.J. Yang, S. Lee, et al., Carbon 85(2015) 289-298.
doi: 10.1016/j.carbon.2015.01.005
J.B. Goodenough, K.S. Park, J. Am. Chem. Soc. 135(2013) 1167-1176.
doi: 10.1021/ja3091438
L. Ji, Z. Lin, M. Alcoutlabi, et al., Energy Environ. Sci. 4(2011) 2682-2699.
doi: 10.1039/c0ee00699h
A. Van der Ven, J. Bhattacharya, A.A. Belak, Acc. Chem. Res. 46(2012) 1216-1225.
J. Liang, F. Li, H.M. Cheng, Energy Storage Mater. 4(2016) A1-A4.
doi: 10.1016/j.ensm.2016.05.010
J. Lu, Z. Chen, Z. Ma, et al., Nat. Nanotechnol. 11(2016) 1031-1038.
doi: 10.1038/nnano.2016.207
Q. Qu, T. Gao, H. Zheng, et al., Carbon 92(2015) 119-125.
doi: 10.1016/j.carbon.2015.03.061
Y. Sun, G. Zheng, Z.W. Seh, et al., Chem 1(2016) 287-297.
doi: 10.1016/j.chempr.2016.07.009
R. Raccichini, A. Varzi, D. Wei, et al., Adv. Mater. 29(2017) 1603421.
doi: 10.1002/adma.201603421
H. Wan, G. Peng, X. Yao, et al., Energy Storage Mater. 4(2016) 59-65.
doi: 10.1016/j.ensm.2016.02.004
L. Peng, Y. Zhu, D. Chen, et al., Adv. Energy Mater. 6(2016) 1600025.
doi: 10.1002/aenm.201600025
Y.T. Zuo, J. Peng, G. Li, et al., Chin. Chem. Lett. 27(2016) 887-890.
doi: 10.1016/j.cclet.2016.02.003
X. Cai, L. Lai, Z. Shen, et al., J. Mater. Chem. A 5(2017) 15423-15446.
doi: 10.1039/C7TA04354F
M. Ye, C. Li, Y. Zhao, et al., Carbon 106(2016) 9-19.
doi: 10.1016/j.carbon.2016.05.013
W. Yan, X. Cao, J. Tian, et al., Carbon 99(2016) 195-202.
doi: 10.1016/j.carbon.2015.12.011
T. Zhang, F. Zhang, L. Zhang, et al., Carbon 92(2015) 106-118.
doi: 10.1016/j.carbon.2015.03.032
J. Xie, S. Liu, G. Cao, et al., Nano Energy 2(2013) 49-56.
doi: 10.1016/j.nanoen.2012.07.010
N. Mahmood, C. Zhang, J. Jiang, et al., Chem. Eur. J. 19(2013) 5183-5190.
doi: 10.1002/chem.201204549
S. Kong, Z. Jin, H. Liu, et al., J. Phys. Chem. C 118(2014) 25355-25364.
doi: 10.1021/jp508698q
J. He, Y. Chen, P. Li, et al., Electrochim. Acta 182(2015) 424-429.
doi: 10.1016/j.electacta.2015.09.131
N. Mahmood, C. Zhang, Y. Hou, Small 9(2013) 1321-1328.
doi: 10.1002/smll.201203032
C. Wu, J. Maier, Y. Yu, Adv. Mater. 28(2016) 174-180.
doi: 10.1002/adma.201503969
Y. Zhang, Q. Zhou, J. Zhu, et al., Adv. Funct. Mater. 27(2017) 1702317.
doi: 10.1002/adfm.v27.35
H. Jiang, D. Ren, H. Wang, et al., Adv. Mater. 27(2015) 3687-3695.
doi: 10.1002/adma.v27.24
Y. Teng, H. Zhao, Z. Zhang, et al., ACS Nano 10(2016) 8526-8535.
doi: 10.1021/acsnano.6b03683
J. Wang, J. Liu, D. Chao, et al., Adv. Mater. 26(2014) 7162-7169.
doi: 10.1002/adma.v26.42
T.T. Shan, S. Xin, Y. You, et al., Angew. Chem. Int. Ed.128(2016) 12975-12980.
doi: 10.1002/ange.201606870
F. Lou, D. Chen, J. Energy Chem. 24(2015) 559-586.
doi: 10.1016/j.jechem.2015.08.013
Y. Wang, D. Kong, W. Shi, et al., Adv. Energy Mater. 6(2016) 1601057.
doi: 10.1002/aenm.201601057
J.W. Seo, J.T. Jang, S.W. Park, et al., Adv. Mater. 20(2008) 4269-4273.
doi: 10.1002/adma.v20:22
K. Chang, Z. Wang, G. Huang, et al., J. Power Sources 201(2012) 259-266.
doi: 10.1016/j.jpowsour.2011.10.132
P. Zheng, Z. Dai, Y. Zhang, et al., Nanoscale 9(2017) 14820-14825.
doi: 10.1039/C7NR06044K
J. Xie, F. Tu, Q. Su, et al., Nano Energy 5(2014) 122-131.
doi: 10.1016/j.nanoen.2014.03.001
Z. Li, H. Xue, J. Wang, et al., ChemElectroChem 2(2015) 1682-1686.
doi: 10.1002/celc.201500179
Z. Zhang, Y. Fu, X. Yang, et al., Electrochim. Acta 168(2015) 285-291.
doi: 10.1016/j.electacta.2015.04.025
L. Ma, X. Zhou, L. Xu, et al., J. Power Sources 285(2015) 274-280.
doi: 10.1016/j.jpowsour.2015.03.120
X. Chen, H. Tang, Z. Huang, et al., Ceram. Int. 43(2017) 1437-1442.
doi: 10.1016/j.ceramint.2016.10.110
H.J. Peng, J.Q. Huang, Q. Zhang, Chem. Soc. Rev. 46(2017) 5237-5288.
doi: 10.1039/C7CS00139H
R. Fang, S. Zhao, Z. Sun, et al., Adv. Mater. 29(2017) 1606823.
doi: 10.1002/adma.v29.48
S. Imtiaz, J. Zhang, Z.A. Zafar, et al., Sci. China Mater. 59(2016) 389-407.
doi: 10.1007/s40843-016-5047-8
H.J. Peng, J.Q. Huang, X.B. Cheng, et al., Adv. Energy Mater. 7(2017) 1700260.
doi: 10.1002/aenm.v7.24
Q. Pang, X. Liang, C.Y. Kwok, et al., Nat. Energy 1(2016) 16132.
doi: 10.1038/nenergy.2016.132
X.B. Cheng, R. Zhang, C.Z. Zhao, et al., Chem. Rev. 117(2017) 10403-10473.
doi: 10.1021/acs.chemrev.7b00115
C.Z. Zhao, X.B. Cheng, R. Zhang, et al., Energy Storage Mater. 3(2016) 77-84.
doi: 10.1016/j.ensm.2016.01.007
Z. Yuan, H.J. Peng, J.Q. Huang, et al., Adv. Funct. Mater. 24(2014) 6105-6112.
doi: 10.1002/adfm.v24.39
H.J. Peng, J.Q. Huang, X.Y. Liu, et al., J. Am. Chem. Soc. 139(2017) 8458-8466.
doi: 10.1021/jacs.6b12358
H.J. Peng, J. Liang, L. Zhu, et al., ACS Nano 8(2014) 11280-11289.
doi: 10.1021/nn503985s
P.Y. Zhai, H.J. Peng, X.B. Cheng, et al., Energy Storage Mater. 7(2017) 56-63.
doi: 10.1016/j.ensm.2016.12.004
J. Liang, Z.H. Sun, F. Li, et al., Energy Storage Mater. 2(2016) 76-106.
doi: 10.1016/j.ensm.2015.09.007
M. Yu, R. Li, M. Wu, et al., Energy Storage Mater. 1(2015) 51-73.
doi: 10.1016/j.ensm.2015.08.004
J.Q. Huang, Q. Zhang, F. Wei, Energy Storage Mater. 1(2015) 127-145.
doi: 10.1016/j.ensm.2015.09.008
L. Kong, H.J. Peng, J.Q. Huang, et al., Energy Storage Mater. 8(2017) 153-160.
doi: 10.1016/j.ensm.2017.05.009
H.J. Peng, Z.W. Zhang, J.Q. Huang, et al., Adv. Mater. 28(2016) 9551-9558.
doi: 10.1002/adma.201603401
L. Kong, H.J. Peng, J.Q. Huang, et al., Nano Res (2017) 1-28.
H.J. Peng, Q. Zhang, Angew. Chem. Int. Ed. 54(2015) 11018-11020.
doi: 10.1002/anie.201505444
T.Z. Hou, W.T. Xu, X. Chen, et al., Angew. Chem. Int. Ed. 56(2017) 8178-8182.
doi: 10.1002/anie.v56.28
X. Chen, H.J. Peng, R. Zhang, et al., ACS Energy Lett. 2(2017) 795-801.
doi: 10.1021/acsenergylett.7b00164
T.Z. Hou, X. Chen, H.J. Peng, et al., Small 12(2016) 3283-3291.
doi: 10.1002/smll.v12.24
H.J. Peng, T.Z. Hou, Q. Zhang, et al., Adv. Mater. Interfaces 1(2014) 1400227.
doi: 10.1002/admi.201400227
M.Q. Zhao, X.F. Liu, Q. Zhang, et al., ACS Nano 6(2012) 10759-10769.
doi: 10.1021/nn304037d
J.Q. Huang, Q. Zhang, S.M. Zhang, et al., Carbon 58(2013) 99-106.
doi: 10.1016/j.carbon.2013.02.037
X. Liu, Q. Zhang, J. Huang, et al., J. Energy Chem. 22(2013) 341-346.
doi: 10.1016/S2095-4956(13)60042-X
C. Tang, B.Q. Li, Q. Zhang, et al., Adv. Funct. Mater. 26(2016) 577-585.
doi: 10.1002/adfm.v26.4
J.L. Shi, C. Tang, H.J. Peng, et al., Small 11(2015) 5243-5252.
doi: 10.1002/smll.201501467
L. Zhu, H.J. Peng, J. Liang, et al., Nano Energy 11(2015) 746-755.
doi: 10.1016/j.nanoen.2014.11.062
J.L. Shi, H.J. Peng, L. Zhu, et al., Carbon 92(2015) 96-105.
doi: 10.1016/j.carbon.2015.03.031
J.Q. Huang, X.F. Liu, Q. Zhang, et al., Nano Energy 2(2013) 314-321.
doi: 10.1016/j.nanoen.2012.10.003
H.J. Peng, G. Zhang, X. Chen, et al., Angew. Chem. Int. Ed. 128(2016) 13184-13189.
doi: 10.1002/ange.201605676
Z. Yuan, H.J. Peng, T.Z. Hou, et al., Nano Lett. 16(2016) 519-527.
doi: 10.1021/acs.nanolett.5b04166
L. Borchardt, M. Oschatz, S. Kaskel, J. Chem. Eur. 22(2016) 7324-7351.
doi: 10.1002/chem.201600040
Z. Li, Y. Huang, L. Yuan, et al., Carbon 92(2015) 41-63.
doi: 10.1016/j.carbon.2015.03.008
Z.W. Seh, Y. Sun, Q. Zhang, et al., Chem. Soc. Rev. 45(2016) 5605-5634.
doi: 10.1039/C5CS00410A
Z. Li, H.B. Wu, X.W.D. Lou, Energy Environ. Sci. 9(2016) 3061-3070.
doi: 10.1039/C6EE02364A
P. Zeng, L. Huang, X. Zhang, et al., Appl. Surf. Sci. 427(2018) 242-252.
doi: 10.1016/j.apsusc.2017.08.062
Z. Ma, Z. Li, K. Hu, et al., J. Power Sources 325(2016) 71-78.
doi: 10.1016/j.jpowsour.2016.04.139
Q. Pang, D. Kundu, L.F. Nazar, Mater. Horiz. 3(2016) 130-136.
doi: 10.1039/C5MH00246J
G. Ji, Y. Yu, Q. Yao, et al., NPG Asia Mater. 8(2016) e247.
doi: 10.1038/am.2016.21
H. Li, C. Tsai, A.L. Koh, et al., Nat. Mater. 15(2016) 48-53.
doi: 10.1038/nmat4465
H. Wang, Q. Zhang, H. Yao, et al., Nano Lett. 14(2014) 7138-7144.
doi: 10.1021/nl503730c
H. Lin, L. Yang, X. Jiang, et al., Energy Environ. Sci. 10(2017) 1476-1486.
doi: 10.1039/C7EE01047H
J. Lu, Y.J. Lee, X. Luo, et al., Nature 529(2016) 377-382.
doi: 10.1038/nature16484
Z. Chang, J. Xu, X. Zhang, Adv. Energy Mater. 7(2017) 1700875.
doi: 10.1002/aenm.v7.23
Z. Peng, S.A. Freunberger, Y. Chen, et al., Science 337(2012) 563-566.
doi: 10.1126/science.1223985
C. Wu, C.B. Liao, L. Li, et al., Chin. Chem. Lett. 27(2016) 1485-1489.
doi: 10.1016/j.cclet.2016.03.023
T. Liu, M. Leskes, W. Yu, et al., Science 350(2015) 530-533.
doi: 10.1126/science.aac7730
Z. Lyu, Y. Zhou, W. Dai, et al., Chem. Soc. Rev. 46(2017) 6046-6072.
doi: 10.1039/C7CS00255F
K. Song, D.A. Agyeman, M. Park, et al., Adv. Mater. 29(2017) 1606572.
doi: 10.1002/adma.v29.48
C. Zhao, C. Yu, S. Liu, et al., Adv. Funct. Mater. 25(2015) 6913-6920.
doi: 10.1002/adfm.201503077
X. Guo, P. Liu, J. Han, et al., Adv. Mater. 27(2015) 6137-6143.
doi: 10.1002/adma.201503182
B. Sun, X. Huang, S. Chen, et al., Nano Lett. 14(2014) 3145-3152.
doi: 10.1021/nl500397y
M. Asadi, B. Kumar, C. Liu, et al., ACS Nano 10(2016) 2167-2175.
doi: 10.1021/acsnano.5b06672
S.A. Cho, Y.J. Jang, H.D. Lim, et al., Adv. Energy Mater. 7(2017) 1700391.
doi: 10.1002/aenm.201700391
B.G. Kim, C. Jo, J. Shin, et al., ACS Nano 11(2017) 1736-1746.
doi: 10.1021/acsnano.6b07635
S. Wang, Y. Suo, C. Su, et al., Electrochim. Acta 188(2016) 718-726.
doi: 10.1016/j.electacta.2015.12.046
Z. Lyu, J. Zhang, L. Wang, et al., RSC Adv. 6(2016) 31739-31743.
doi: 10.1039/C6RA00723F
C. Tang, B. Wang, H.F. Wang, et al., Adv. Mater. 29(2017) 1703185.
doi: 10.1002/adma.v29.37
V. Neburchilov, H. Wang, J.J. Martin, et al., J. Power Sources 195(2010) 1271-1291.
doi: 10.1016/j.jpowsour.2009.08.100
Y. Li, H. Dai, Chem. Soc. Rev. 43(2014) 5257-5275.
doi: 10.1039/C4CS00015C
J.S. Lee, S. Tai Kim, R. Cao, et al., Adv. Energy Mater. 1(2011) 34-50.
doi: 10.1002/aenm.201000010
J. Yang, G. Zhu, Y. Liu, et al., Adv. Funct. Mater. 26(2016) 4712-4721.
doi: 10.1002/adfm.v26.26
P. Cai, J. Huang, J. Chen, et al., Angew. Chem. Int. Ed. 56(2017) 4858-4861.
doi: 10.1002/anie.201701280
D. Geng, N.N. Ding, T.A. Hor, et al., RSC Adv. 5(2015) 7280-7284.
doi: 10.1039/C4RA13404D
H.F. Wang, C. Tang, B. Wang, et al., Adv. Mater. 29(2017) 1702327.
doi: 10.1002/adma.201702327
J. Fu, F.M. Hassan, C. Zhong, et al., Adv. Mater. 29(2017) 1702526.
doi: 10.1002/adma.201702526
B.Q. Li, Z.J. Xia, B. Zhang, et al., Nat. Commun. 8(2017) 934.
doi: 10.1038/s41467-017-01053-x
X. Zhu, C. Tang, H.F. Wang, et al., J. Mater. Chem.A 4(2016) 7245-7250.
doi: 10.1039/C6TA02216B
L. Yao, H. Zhong, C. Deng, et al., J. Energy Chem. 25(2016) 153-157.
doi: 10.1016/j.jechem.2015.11.013
L. Yuan, Z. Yan, L. Jiang, et al., J. Energy Chem. 25(2016) 805-810.
doi: 10.1016/j.jechem.2016.04.013
C. Tang, M.M. Titirici, Q. Zhang, J. Energy Chem. 26(2017) 1077-1093.
doi: 10.1016/j.jechem.2017.08.008
G. Zhang, X. Jin, H. Li, et al., Sci. China Mater. 59(2016) 337-347.
R. Li, D. Zhang, Y. Zhou, et al., Sci. China Chem. 59(2016) 746-751.
B.Q. Li, C. Tang, H.F. Wang, et al., Sci. Adv. 2(2016) e1600495.
doi: 10.1126/sciadv.1600495
M. Seredych, K. László, E. Rodríguez-Castellón, et al., J. Energy Chem. 25(2016) 236-245.
doi: 10.1016/j.jechem.2016.01.005
C. Tang, Q. Zhang, Adv. Mater. 29(2017) 1604103.
doi: 10.1002/adma.201604103
J. Wang, Z.X. Wu, L.L. Han, et al., Chin. Chem. Lett. 27(2016) 597-601.
doi: 10.1016/j.cclet.2016.03.011
C. Tang, H.F. Wang, X. Chen, et al., Adv. Mater. 28(2016) 6845-6851.
doi: 10.1002/adma.201601406
L. Wang, W. Jia, X. Liu, et al., J. Energy Chem. 25(2016) 566-570.
doi: 10.1016/j.jechem.2016.02.012
H.F. Wang, C. Tang, Q. Zhang, Catal Today (2017), doi:http://dx.doi.org/10.1016/j.cattod.2017.02.012.
doi: 10.1016/j.cattod.2017.02.012
G.R. Zhang, B.J. Etzold, J. Energy Chem. 25(2016) 199-207.
doi: 10.1016/j.jechem.2016.01.007
F. Hasché, M. Oezaslan, P. Strasser, et al., J. Energy Chem. 25(2016) 251-257.
doi: 10.1016/j.jechem.2016.01.024
M.Q. Guo, J.Q. Huang, X.Y. Kong, et al., New Carbon Mater. 31(2016) 352-362.
doi: 10.1016/S1872-5805(16)60019-7
H. Wang, Y. Liang, Y. Li, et al., Angew. Chem. Int. Ed. 50(2011) 10969-10972.
doi: 10.1002/anie.v50.46
S. Dou, L. Tao, J. Huo, et al., Energy Environ. Sci. 9(2016) 1320-1326.
doi: 10.1039/C6EE00054A
G. Zhang, B.Y. Xia, X. Wang, Adv. Mater. 26(2014) 2408-2412.
doi: 10.1002/adma.v26.15
G. He, M. Qiao, W. Li, et al., Adv. Sci. 4(2017) 1600214.
doi: 10.1002/advs.201600214
F. Song, X. Hu, J. Am. Chem. Soc. 136(2014) 16481-16484.
doi: 10.1021/ja5096733
B.Q. Li, S.Y. Zhang, C. Tang, et al., Small 13(2017) 1700610.
doi: 10.1002/smll.v13.25
P. Chen, T.Y. Xiao, H.H. Li, et al., ACS Nano 6(2011) 712-719.
M.R. Gao, X. Cao, Q. Gao, et al., ACS Nano 8(2014) 3970-3978.
doi: 10.1021/nn500880v
H. Wu, Y. Zhang, L. Cheng, et al., Energy Storage Mater. 5(2016) 8-32.
doi: 10.1016/j.ensm.2016.05.003
H. Hu, Z. Pei, C. Ye, Energy Storage Mater. 1(2015) 82-102.
doi: 10.1016/j.ensm.2015.08.005
M.X. Liu, L.Y. Chen, D.Z. Zhu, et al., Chin. Chem. Lett. 27(2016) 399-404.
doi: 10.1016/j.cclet.2015.12.026
S. Li, M. Wang, Y. Lian, Sci. China Chem. 59(2016) 405-411.
doi: 10.1007/s11426-016-5559-2
Y. Yue, H. Liang, J. Power Sources 284(2015) 435-445.
doi: 10.1016/j.jpowsour.2015.03.069
S. Zhang, N. Pan, Adv. Energy Mater. 5(2015) 1401401.
doi: 10.1002/aenm.201401401
Q. Wang, J. Yan, Z. Fan, Energy Environ. Sci. 9(2016) 729-762.
doi: 10.1039/C5EE03109E
D. Sheberla, J.C. Bachman, J.S. Elias, et al., Nat. Mater. 16(2017) 220-224.
doi: 10.1038/nmat4766
A. Vijayakumar, R. Rajagopalan, A.S. Sushamakumariamma, et al., J. Energy Chem. 24(2015) 337-345.
doi: 10.1016/S2095-4956(15)60320-5
R. Chandrasekaran, J. Palma, M. Anderson, J. Energy Chem. 24(2015) 264-270.
doi: 10.1016/S2095-4956(15)60310-2
D.P. Dubal, O. Ayyad, V. Ruiz, et al., Chem. Soc. Rev. 44(2015) 1777-1790.
doi: 10.1039/C4CS00266K
Y. Song, J. Yang, K. Wang, et al., Carbon 96(2016) 955-964.
doi: 10.1016/j.carbon.2015.10.060
X. Zhou, H. Li, J. Yang, J. Energy Chem. 25(2016) 35-40.
doi: 10.1016/j.jechem.2015.11.008
A. Divyashree, S.A.B.A. Manaf, S. Yallappa, et al., J. Energy Chem. 25(2016) 880-887.
doi: 10.1016/j.jechem.2016.08.002
X. Wang, M. Wang, X. Zhang, et al., J. Energy Chem. 25(2016) 26-34.
doi: 10.1016/j.jechem.2015.10.012
G.A. Ali, S.A.A. Manaf, A. Divyashree, et al., J. Energy Chem. 25(2016) 734-739.
doi: 10.1016/j.jechem.2016.04.007
C. Liu, Y. Tan, Y. Liu, et al., J. Energy Chem. 25(2016) 587-593.
doi: 10.1016/j.jechem.2016.03.017
V. Augustyn, P. Simon, B. Dunn, Energy Environ. Sci. 7(2014) 1597-1614.
doi: 10.1039/c3ee44164d
S.S. Yang, M.J. Xie, Y. Shen, et al., Chin. Chem. Lett. 27(2016) 507-510.
doi: 10.1016/j.cclet.2016.01.058
M. Liu, J. Li, W. Han, et al., J. Energy Chem. 25(2016) 601-608.
doi: 10.1016/j.jechem.2016.03.002
S. Zheng, Z.S. Wu, S. Wang, et al., Energy Storage Mater. 6(2017) 70-97.
doi: 10.1016/j.ensm.2016.10.003
H. Hu, B.Y. Guan, X.W.D. Lou, Chem1(2016) 102-113.
doi: 10.1016/j.chempr.2016.06.001
R. Wang, Y. Luo, Z. Chen, et al., Sci. China Mater. 59(2016) 629-638.
doi: 10.1007/s40843-016-5074-y
K. Annamalai, Y.S. Tao, New Carbon Mater. 31(2016) 336-342.
doi: 10.1016/S1872-5805(16)60017-3
B. Qu, Y. Chen, M. Zhang, et al., Nanoscale 4(2012) 7810-7816.
doi: 10.1039/c2nr31902k
A. Wang, H. Wang, S. Zhang, et al., Appl. Surf. Sci. 282(2013) 704-708.
doi: 10.1016/j.apsusc.2013.06.038
J. Yan, G. Lui, R. Tjandra, et al., RSC Adv. 5(2015) 27940-27945.
doi: 10.1039/C5RA02996A
T.W. Lin, C.S. Dai, T.T. Tasi, et al., Chem. Eng. J. 279(2015) 241-249.
doi: 10.1016/j.cej.2015.05.011
A.A. AbdelHamid, X. Yang, J. Yang, et al., Nano Energy 26(2016) 425-437.
doi: 10.1016/j.nanoen.2016.05.046
K.J. Huang, J.Z. Zhang, Y. Liu, et al., Int. J. Hydrogen Energy 40(2015) 10158-10167.
doi: 10.1016/j.ijhydene.2015.05.152
B. Xie, Y. Chen, M. Yu, et al., Carbon 99(2016) 35-42.
doi: 10.1016/j.carbon.2015.11.077
S. Ratha, C.S. Rout, ACS Appl. Mater. Interfaces 5(2013) 11427-11433.
doi: 10.1021/am403663f
X.Y. Yu, X.W. Lou, Adv. Energy Mater. 7(2017) 1701592.
S. Peng, L. Li, C. Li, et al., Chem. Commun. 49(2013) 10178-10180.
doi: 10.1039/c3cc46034g
W. Du, Z. Wang, Z. Zhu, et al., J. Mater. Chem. A 2(2014) 9613-9619.
doi: 10.1039/C4TA00414K
J. Yang, C. Yu, X. Fan, et al., Energy Environ. Sci. 9(2016) 1299-1307.
doi: 10.1039/C5EE03633J
H. Tong, W. Bai, S. Yue, et al., J. Mater. Chem. A 4(2016) 11256-11263.
doi: 10.1039/C6TA02249A
M. Guo, J. Balamurugan, T.D. Thanh, et al., J. Mater. Chem. A 4(2016) 17560-17571.
doi: 10.1039/C6TA07400F
K.J. Huang, J.Z. Zhang, J.L. Cai, Electrochim. Acta 180(2015) 770-777.
doi: 10.1016/j.electacta.2015.09.016
B. Kirubasankar, V. Murugadoss, S. Angaiah, RSC Adv. 7(2017) 5853-5862.
doi: 10.1039/C6RA25078E
B. O'regan, M. Grätzel, Nature 353(1991) 737-740.
doi: 10.1038/353737a0
X.P. Xu, Y. Li, M.M. Luo, et al., Chin. Chem. Lett. 27(2016) 1241-1249.
doi: 10.1016/j.cclet.2016.05.006
G. Anjusree, T. Deepak, S.V. Nair, et al., J. Energy Chem. 24(2015) 762-769.
doi: 10.1016/j.jechem.2015.11.001
J. Chen, X. Li, W. Wu, et al., J. Energy Chem. 24(2015) 750-755.
doi: 10.1016/j.jechem.2015.10.004
A. Yella, H.W. Lee, H.N. Tsao, et al., Science 334(2011) 629-634.
doi: 10.1126/science.1209688
Y. Jia, Y. Shi, J. Qiu, et al., J. Energy Chem. 25(2016) 861-867.
doi: 10.1016/j.jechem.2016.07.002
S. Mathew, A. Yella, P. Gao, et al., Nat. Chem. 6(2014) 242-247.
doi: 10.1038/nchem.1861
M. Grätzel, Nature 414(2001) 338-344.
doi: 10.1038/35104607
A. Hagfeldt, G. Boschloo, L. Sun, et al., Chem. Rev. 110(2010) 6595-6663.
doi: 10.1021/cr900356p
X. Cui, J. Xiao, Y. Wu, et al., Angew. Chem. Int. Ed. 55(2016) 6708-6712.
doi: 10.1002/anie.201602097
H. Wang, G. Liu, X. Li, et al., Energy Environ. Sci. 4(2011) 2025-2029.
doi: 10.1039/c0ee00821d
J.D. Roy-Mayhew, I.A. Aksay, Chem. Rev. 114(2014) 6323-6348.
doi: 10.1021/cr400412a
S. Yun, A. Hagfeldt, T. Ma, Adv. Mater. 26(2014) 6210-6237.
doi: 10.1002/adma.201402056
J.S. Luo, Z.Q. Wan, C.Y. Jia, Chin. Chem. Lett. 27(2016) 1304-1318.
doi: 10.1016/j.cclet.2016.07.002
Y. Xue, J. Liu, H. Chen, et al., Angew. Chem. Int. Ed. 51(2012) 12124-12127.
doi: 10.1002/anie.201207277
M. Batmunkh, M.J. Biggs, J.G. Shapter, Small 11(2015) 2963-2989.
doi: 10.1002/smll.v11.25
Y. Duan, Y. Chen, Q. Tang, et al., J. Power Sources 284(2015) 178-185.
doi: 10.1016/j.jpowsour.2015.03.032
L.Y. Chang, C.T. Li, Y.Y. Li, et al., Electrochim. Acta 155(2015) 263-271.
doi: 10.1016/j.electacta.2014.12.127
D.H. Kim, S.E. Atanasov, P. Lemaire, et al., ACS Appl. Mater. Interfaces 7(2015) 3866-3870.
doi: 10.1021/am5084418
X. Chen, Q. Tang, B. He, et al., Angew. Chem. Int. Ed. 53(2014) 10799-10803.
doi: 10.1002/anie.201406982
J. Liu, Q. Tang, B. He, J. Power Sources 268(2014) 56-62.
doi: 10.1016/j.jpowsour.2014.06.022
M. Wu, Y.N. Lin, H. Guo, et al., J. Power Sources 263(2014) 154-157.
doi: 10.1016/j.jpowsour.2014.04.029
F. Gong, H. Wang, X. Xu, et al., J. Am. Chem. Soc. 134(2012) 10953-10958.
doi: 10.1021/ja303034w
H. Sun, D. Qin, S. Huang, et al., Energy Environ. Sci. 4(2011) 2630-2637.
doi: 10.1039/c0ee00791a
H. Yuan, Q. Jiao, S. Zhang, et al., J. Power Sources 325(2016) 417-426.
doi: 10.1016/j.jpowsour.2016.06.052
H. Yuan, Q. Jiao, J. Liu, et al., J. Power Sources 336(2016) 132-142.
doi: 10.1016/j.jpowsour.2016.10.062
H. Yuan, Q. Jiao, J. Liu, et al., Carbon 122(2017) 381-388.
doi: 10.1016/j.carbon.2017.06.095
H. Yuan, J. Liu, Q. Jiao, et al., Carbon 119(2017) 225-234.
doi: 10.1016/j.carbon.2017.04.040
L. Chen, H. Dai, Y. Zhou, et al., Chem. Commun. 50(2014) 14321-14324.
doi: 10.1039/C4CC03882G
C. Yu, Z. Liu, Y. Chen, et al., Sci. China Mater. 59(2016) 104-111.
doi: 10.1007/s40843-016-0121-2
M. Wang, A.M. Anghel, B. Marsan, et al., J. Am. Chem. Soc.131(2009) 15976-15977.
doi: 10.1021/ja905970y
H. Yuan, J. Liu, H. Li, et al., Carbon 126(2018) 514-521.
doi: 10.1016/j.carbon.2017.10.067
X. Meng, C. Yu, B. Lu, et al., Nano Energy 22(2016) 59-69.
doi: 10.1016/j.nanoen.2016.02.010
B. Yang, X. Zuo, P. Chen, et al., ACS Appl. Mater. Interfaces 7(2015) 137-143.
doi: 10.1021/am5040522
J.Shen, R. Cheng, Y. Luo, etal., J. Solid StateElectrochem.19(2015) 1045-1052.
doi: 10.1007/s10008-014-2704-8
X. Zuo, R. Zhang, B. Yang, et al., J. Mater. Sci. Mater. Electron. 26(2015) 8176-8181.
doi: 10.1007/s10854-015-3478-1
J.Y. Lin, C.Y. Chan, S.W. Chou, Chem. Commun. 49(2013) 1440-1442.
doi: 10.1039/c2cc38658e
J.Y. Lin, A.L. Su, C.Y. Chang, et al., ChemElectroChem 2(2015) 720-725.
doi: 10.1002/celc.v2.5
E. Bi, Y. Su, H. Chen, et al., RSC Adv. 5(2015) 9075-9078.
doi: 10.1039/C4RA14029J
S.Q. Guo, T.Z. Jing, X. Zhang, et al., Nanoscale 6(2014) 14433-14440.
doi: 10.1039/C4NR04274C
Z. Jin, M. Zhang, M. Wang, et al., Acc. Chem. Res. 50(2017) 895-904.
doi: 10.1021/acs.accounts.6b00625
X. Zhang, Y. Yang, S. Guo, et al., ACS Appl. Mater. Interfaces 7(2015) 8457-8464.
doi: 10.1021/acsami.5b00464
X. Zhang, S. Guo, M. Zhen, et al., J. Electrochem. Soc. 162(2015) H774-H779.
doi: 10.1149/2.0181510jes
X. Zhang, M. Zhen, J. Bai, et al., ACS Appl. Mater. Interfaces 8(2016) 17187-17193.
doi: 10.1021/acsami.6b02350
L. Zhu, T.S. Park, K.Y. Cho, et al., J. Mater. Sci. Mater. Electron. 27(2016) 2062-2070.
doi: 10.1007/s10854-015-3992-1
J. Dong, J. Wu, J. Jia, et al., J. Power Sources 336(2016) 83-90.
doi: 10.1016/j.jpowsour.2016.10.056
L. Wei, H.E. Karahan, S. Zhai, et al., J. Energy Chem. 25(2016) 191-198.
doi: 10.1016/j.jechem.2015.12.001
P. Wei, B. Hu, L. Zhou, et al., J. Energy Chem. 25(2016) 345-348.
doi: 10.1016/j.jechem.2016.03.020
J. Li, D. Gao, J. Wang, et al., J. Energy Chem. 24(2015) 608-613.
doi: 10.1016/j.jechem.2015.08.003
Y. He, J.E. Thorne, C.H. Wu, et al., Chem 1(2016) 640-655.
doi: 10.1016/j.chempr.2016.09.006
T.R. Cook, D.K. Dogutan, S.Y. Reece, et al., Chem. Rev. 110(2010) 6474-6502.
doi: 10.1021/cr100246c
J. Ran, J. Zhang, J. Yu, et al., Chem. Soc. Rev. 43(2014) 7787-7812.
doi: 10.1039/C3CS60425J
S. Cao, J. Yu, J. Photochem. Photobiol. C 27(2016) 72-99.
doi: 10.1016/j.jphotochemrev.2016.04.002
M. Kimi, L. Yuliati, M. Shamsuddin, J. Energy Chem. 25(2016) 512-516.
doi: 10.1016/j.jechem.2016.03.012
C. Haw, W. Chiu, N.H. Khanis, et al., J. Energy Chem. 25(2016) 691-701.
doi: 10.1016/j.jechem.2016.04.006
Y. Wang, Y. Zeng, B. Li, et al., J. Energy Chem. 25(2016) 594-600.
doi: 10.1016/j.jechem.2016.03.018
R. Meng, J. Jiang, Q. Liang, et al., Sci. China Mater. 59(2016) 1027-1036.
doi: 10.1007/s40843-016-5122-3
Q. Xiang, J. Yu, M. Jaroniec, J. Am. Chem. Soc. 134(2012) 6575-6578.
doi: 10.1021/ja302846n
S. Min, G. Lu, J. Phys. Chem. C 116(2012) 25415-25424.
doi: 10.1021/jp3093786
X. Hao, Z. Jin, H. Yang, et al., Appl. Catal. B:Environ. 210(2017) 45-56.
doi: 10.1016/j.apcatb.2017.03.057
K. Chang, Z. Mei, T. Wang, et al., ACS Nano 8(2014) 7078-7087.
doi: 10.1021/nn5019945
Q. Xiang, F. Cheng, D. Lang, ChemSusChem 9(2016) 996-1002.
doi: 10.1002/cssc.201501702
M. Wang, P. Ju, J. Li, et al., ACS Sustain. Chem. Eng. 5(2017) 7878-7886.
doi: 10.1021/acssuschemeng.7b01386
L. Jia, X. Sun, Y. Jiang, et al., Adv. Funct. Mater. 25(2015) 1814-1820.
doi: 10.1002/adfm.201401814
J. Huang, Z. Shi, X. Dong, J. Energy Chem. 25(2016) 136-140.
doi: 10.1016/j.jechem.2015.11.007
Q. Lu, Y. Yu, Q. Ma, et al., Adv. Mater. 28(2016) 1917-1933.
doi: 10.1002/adma.201503270
J. Zhang, M.H. Wu, Z.T. Shi, et al., Small 12(2016) 4379-4385.
doi: 10.1002/smll.v12.32
X. Li, X. Hao, A. Abudula, et al., J. Mater. Chem. A 4(2016) 11973-12000.
doi: 10.1039/C6TA02334G
S. Anantharaj, S.R. Ede, K. Sakthikumar, et al., ACS Catal. 6(2016) 8069-8097.
doi: 10.1021/acscatal.6b02479
P. Xiao, W. Chen, X. Wang, Adv. Energy Mater. 5(2015) 1500985.
doi: 10.1002/aenm.201500985
S. Peng, L. Li, X. Han, et al., Angew. Chem. Int. Ed. 53(2014) 12594-12599.
Y. Wang, J. Tang, B. Kong, et al., RSC Adv. 5(2015) 6886-6891.
doi: 10.1039/C4RA15912H
D. Voiry, R. Fullon, J. Yang, et al., Nat. Mater. 15(2016) 1003-1009.
doi: 10.1038/nmat4660
H. Wang, Z. Lu, D. Kong, et al., ACS Nano 8(2014) 4940-4947.
doi: 10.1021/nn500959v
C.B. Ma, X. Qi, B. Chen, et al., Nanoscale 6(2014) 5624-5629.
doi: 10.1039/c3nr04975b
D.H. Youn, S. Han, J.Y. Kim, et al., ACS Nano 8(2014) 5164-5173.
doi: 10.1021/nn5012144
S. Chen, J. Duan, Y. Tang, et al., Nano Energy 11(2015) 11-18.
doi: 10.1016/j.nanoen.2014.09.022
X. Zhang, F. Meng, S. Mao, et al., Energy Environ. Sci. 8(2015) 862-868.
doi: 10.1039/C4EE03240C
J. Yang, D. Voiry, S.J. Ahn, et al., Angew. Chem. Int. Ed. 52(2013) 13751-13754.
doi: 10.1002/anie.201307475
Y. Huang, H. Lu, H. Gu, et al., Nanoscale 7(2015) 18595-18602.
doi: 10.1039/C5NR05739F
S. Deng, Y. Zhong, Y. Zeng, et al., Adv. Mater. 29(2017) 1700748.
doi: 10.1002/adma.201700748
X. Wang, Y. Chen, B. Zheng, et al., Electrochim. Acta 222(2016) 1293-1299.
doi: 10.1016/j.electacta.2016.11.104
Shaojie Ding , Henan Wang , Xiaojing Dai , Yuru Lv , Xinxin Niu , Ruilian Yin , Fangfang Wu , Wenhui Shi , Wenxian Liu , Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302
Peng Jia , Yunna Guo , Dongliang Chen , Xuedong Zhang , Jingming Yao , Jianguo Lu , Liqiang Zhang . In-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624
Guan-Nan Xing , Di-Ye Wei , Hua Zhang , Zhong-Qun Tian , Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021
Chunru Liu , Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136
Mengwen Wang , Qintao Sun , Yue Liu , Zhengan Yan , Qiyu Xu , Yuchen Wu , Tao Cheng . Impact of lithium nitrate additives on the solid electrolyte interphase in lithium metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(2): 100203-100203. doi: 10.1016/j.cjsc.2023.100203
Pingfan Zhang , Shihuan Hong , Ning Song , Zhonghui Han , Fei Ge , Gang Dai , Hongjun Dong , Chunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073
Ying Li , Yanjun Xu , Xingqi Han , Di Han , Xuesong Wu , Xinlong Wang , Zhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189
Guihuang Fang , Ying Liu , Yangyang Feng , Ying Pan , Hongwei Yang , Yongchuan Liu , Maoxiang Wu . Tuning the ion-dipole interactions between fluoro and carbonyl (EC) by electrolyte design for stable lithium metal batteries. Chinese Chemical Letters, 2025, 36(1): 110385-. doi: 10.1016/j.cclet.2024.110385
Zhihao Gu , Jiabo Le , Hehe Wei , Zehui Sun , Mahmoud Elsayed Hafez , Wei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849
Chenhao Zhang , Qian Zhang , Yezhou Hu , Hanyu Hu , Junhao Yang , Chang Yang , Ye Zhu , Zhengkai Tu , Deli Wang . N-doped carbon confined ternary Pt2NiCo intermetallics for efficient oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(3): 110429-. doi: 10.1016/j.cclet.2024.110429
Quanyou Guo , Yue Yang , Tingting Hu , Hongqi Chu , Lijun Liao , Xuepeng Wang , Zhenzi Li , Liping Guo , Wei Zhou . Regulating local electron transfer environment of covalent triazine frameworks through F, N co-modification towards optimized oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(1): 110235-. doi: 10.1016/j.cclet.2024.110235
Jingxuan Liu , Shiqi Zhao , Xiang Wu . Flexible electrochemical capacitor based NiMoSSe electrode material with superior cycling and structural stability. Chinese Chemical Letters, 2024, 35(7): 109059-. doi: 10.1016/j.cclet.2023.109059
Ting Hu , Yuxuan Guo , Yixuan Meng , Ze Zhang , Ji Yu , Jianxin Cai , Zhenyu Yang . Uniform lithium deposition induced by copper phthalocyanine additive for durable lithium anode in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108603-. doi: 10.1016/j.cclet.2023.108603
Yan Wang , Huixin Chen , Fuda Yu , Shanyue Wei , Jinhui Song , Qianfeng He , Yiming Xie , Miaoliang Huang , Canzhong Lu . Oxygen self-doping pyrolyzed polyacrylic acid as sulfur host with physical/chemical adsorption dual function for lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(7): 109001-. doi: 10.1016/j.cclet.2023.109001
Fangling Cui , Zongjie Hu , Jiayu Huang , Xiaoju Li , Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337
Shu Lin , Kezhen Qi . Phase-dependent lithium-alloying reactions for lithium-metal batteries. Chinese Chemical Letters, 2024, 35(4): 109431-. doi: 10.1016/j.cclet.2023.109431
Ya Song , Mingxia Zhou , Zhu Chen , Huali Nie , Jiao-Jing Shao , Guangmin Zhou . Integrated interconnected porous and lamellar structures realized fast ion/electron conductivity in high-performance lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(6): 109200-. doi: 10.1016/j.cclet.2023.109200
Peng Wang , Daijie Deng , Suqin Wu , Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199
Xin-Tong Zhao , Jin-Zhi Guo , Wen-Liang Li , Jing-Ping Zhang , Xing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715
Yang LIU , Lijun WANG , Hongyu WANG , Zhidong CHEN , Lin SUN . Surface and interface modification of porous silicon anodes in lithium-ion batteries by the introduction of heterogeneous atoms and hybrid encapsulation. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 773-785. doi: 10.11862/CJIC.20250015