Citation: Wang Fang, Huang Anmin, Yin Xiaoqian, Wang Wenshu, Chen Jianbo. Multilevel profiling and identification of Dalbergia odorifera and Dalbergia stevensonii by FTIR, NMR and GC/MS[J]. Chinese Chemical Letters, ;2018, 29(9): 1395-1398. doi: 10.1016/j.cclet.2017.11.007 shu

Multilevel profiling and identification of Dalbergia odorifera and Dalbergia stevensonii by FTIR, NMR and GC/MS

  • Corresponding author: Huang Anmin, hbham2000@sina.com Chen Jianbo, chenjianbo@bucm.edu.cn
  • Received Date: 30 August 2017
    Revised Date: 6 November 2017
    Accepted Date: 7 November 2017
    Available Online: 8 September 2017

Figures(3)

  • As a rare and valuable wood and herbal material, Dalbergia odorifera is often counterfeited by Dalbergia stevensonii in the market. For the confident chemical identification of D. odorifera and D. stevensonii, the ethanol-benzene extractives are characterized by multiple metabolomics tools, including Fourier transform infrared (FTIR) spectroscopy, nuclear magnetic resonance (NMR), and gas chromatographymass spectrometry (GC/MS). Conventional FTIR spectroscopy, second derivative infrared (SD-IR) spectroscopy and two-dimensional correlation infrared (2D-IR) spectroscopy are combined to interpret the functional groups of the ethanol-benzene extractives. Fingerprint-like characteristics make FTIR a rapid and accurate method to distinguish D. odorifera from D. stevensonii. Chemical differences of the extractives revealed by FTIR methods can be further confirmed by 1H NMR and 13C NMR. Meanwhile, the volatile compounds in the extractives can be identified by GC/MS. The combination of FTIR, NMR and GC/MS makes it possible to obtain the multiple profiles of the ethanol-benzene extractives, which is essential for the confident chemical identification of D. odorifera and D. stevensonii.
  • 加载中
    1. [1]

      M.A. Barrett, J.L. Brown, A.D. Yoder, Nature 499(2013) 29.
       

    2. [2]

      H.L. Huang, F.S. Li, H.D. Huang, Agric. Sci. Technol. 16(2015) 2042-2539.

    3. [3]

      M. Yu, K. Liu, L. Zhou, L. Zhao, S.Q. Liu, Holzforschung 70(2015) 127-136.
       

    4. [4]

      P.J. McClure, G.D. Chavarria, E. Espinoza, Rapid Commun. Mass Spectrom. 29(2015) 783-788.  doi: 10.1002/rcm.7163

    5. [5]

      H. Wang, W.H. Dong, W.J. Zuo, et al., Fitoterapia 95(2014) 16-21.  doi: 10.1016/j.fitote.2014.02.013

    6. [6]

      H. Wang, W.L. Mei, Y.B. Zeng, et al., Phytochem. Lett. 9(2014) 168-173.  doi: 10.1016/j.phytol.2014.06.008

    7. [7]

      B. Sun, A. Huang, Y. Wang, J. Liu, J. Nat. Fibers 12(2014) 1-11.
       

    8. [8]

      A. Kilic, P. Niemz, Eur. J. Wood Prod. 70(2012) 79-83.  doi: 10.1007/s00107-010-0489-8

    9. [9]

      E.M.A. Ajuomg, M.C. Breese, Eur. J. Wood Prod. 56(1998) 139-142.  doi: 10.1007/s001070050285

    10. [10]

      E.M.A. Ajuong, M. Redington, Wood Sci. Technol. 38(2004) 181-190.  doi: 10.1007/s00226-004-0236-6

    11. [11]

      C.W. Choi, Y.H. Choi, M.R. Cha, et al., Appl. Biol. Chem. 52(2009) 375-379.
       

    12. [12]

      S.N. Wang, F.D. Zhang, A.M. Huang, Q. Zhou, Holzforschung 70(2016) 503-510.  doi: 10.1515/hf-2015-0125

    13. [13]

      M. Ek, G. Gellerstedt, G. Henriksson, Wood Chemistry and Wood Biotechnology, Walter de Gruyter GmbH & Co. KG, Berlin, 2009.

    14. [14]

      I. Noda, J. Am. Chem. Soc. 111(1989) 8116-8118.  doi: 10.1021/ja00203a008

    15. [15]

      M.Y. Li, S.C. Cheng, D. Li, et al., Chin. Chem. Lett. 26(2015) 221-225.  doi: 10.1016/j.cclet.2014.11.024

    16. [16]

      M.C. Popescu, J. Froidevaux, P. Navi, C.M. Popescu, J. Mol. Struct. 1033(2013) 176-186.  doi: 10.1016/j.molstruc.2012.08.035

    17. [17]

      S.Q. Sun, Q. Zhou, J.B. Chen, Infrared Spectroscopy for Complex Mixtures:Applications in Food and Traditional Chinese Medicine, 10th, Chemical Industry Press, Beijing, 2011.

    18. [18]

      X.H. Liu, C.H. Xu, S.Q. Sun, et al., Spectrochim. Acta A Mol. Biomol. Spectrosc. 97(2012) 290-296.  doi: 10.1016/j.saa.2012.06.013

    19. [19]

      A.C. Meilan, A.M. Goodman, M.G. Baron, J.G. Rodriguez, Cellulose 23(2016) 901-913.  doi: 10.1007/s10570-015-0848-z

    20. [20]

      B.H. Xu, G.J. Zhang, S.Q. Sun, et al., J. Mol. Struct. 1018(2012) 88-95.  doi: 10.1016/j.molstruc.2011.12.017

    21. [21]

      W.S. Gary, Vib. Spectrosc. 4(1992) 123-124.  doi: 10.1016/0924-2031(92)87024-A

    22. [22]

      A.M. Huang, Q. Zhou, J.L. Liu, B.H. Fei, S.Q. Sun, J. Mol. Struct. 833-834(2008) 160-166.
       

    23. [23]

      S. Luo, Y.Q. Wu, J. Huang, Biobased Mater. Sci. Eng. 10(2012) 156-160.

    24. [24]

      F.D. Zhang, C.H. Xu, M.Y. Li, A.M. Huang, S.Q. Sun, J. Mol. Struct. 1069(2014) 89-95.  doi: 10.1016/j.molstruc.2014.01.085

    25. [25]

      J. Font, N. Salvado, S. Buti, J. Enrich, Anal. Chim. Acta. 598(2007) 119-127.  doi: 10.1016/j.aca.2007.07.021

    26. [26]

      J. Zeng, X.L. Zhang, Z.M. Guo, et al., J. Chromatogr. A 1218(2011) 1749-1755.  doi: 10.1016/j.chroma.2011.01.079

    27. [27]

      E. Duquesnoy, V. Castola, J. Casanova, Carbohyd. Res. 343(2008) 893-902.  doi: 10.1016/j.carres.2008.01.001

    28. [28]

      R. M. Silverstein, F. X. Webster, D. J. Kiemle, Spectrometric Identification of Organic Compounds, John Wiley Inc. & Sons, Hoboken, 2005.

    29. [29]

      T. Ogata, S. Yahara, R. Hisatsune, R. Konishi, T. Nohara, Chem. Pharm. Bull. 38(1990) 979-987.
       

    30. [30]

      Y. Goda, M. Katayama, K. Ichikawa, et al., Chem. Pharm. Bull. 40(1992) 2452-2457.  doi: 10.1248/cpb.40.2452

    31. [31]

      R.X. Liu, M. Ye, H.Z. Guo, K.S. Bi, D. Guo, Rapid Commun. Mass Spectrom. 19(2005) 1557-1565.  doi: 10.1002/(ISSN)1097-0231

    32. [32]

      R.X. Liu, W. Wang, Q. Wang, K.S. Bi, D. Guo, Biomed. Chromatogr. 20(2006) 101-108.  doi: 10.1002/(ISSN)1099-0801

  • 加载中
    1. [1]

      Xinzhi Ding Chong Liu Jing Niu Nan Chen Shutao Xu Yingxu Wei Zhongmin Liu . Solid-state NMR study of the stability of MOR framework aluminum. Chinese Journal of Structural Chemistry, 2024, 43(4): 100247-100247. doi: 10.1016/j.cjsc.2024.100247

    2. [2]

      Ling-Hao ZhaoHai-Wei YanJian-Shuang JiangXu ZhangXiang YuanYa-Nan YangPei-Cheng Zhang . Effective assignment of positional isomers in dimeric shikonin and its analogs by 1H NMR spectroscopy. Chinese Chemical Letters, 2024, 35(5): 108863-. doi: 10.1016/j.cclet.2023.108863

    3. [3]

      Honglin Gao Chunlin Yuan Hongyu Chen Aiyi Dong Pan Gao Guangjin Hou . Surface gallium hydride on Ga2O3 polymorphs: A comparative solid-state NMR study. Chinese Journal of Structural Chemistry, 2025, 44(4): 100561-100561. doi: 10.1016/j.cjsc.2025.100561

    4. [4]

      Runze Liu Yankai Bian Weili Dai . Qualitative and quantitative analysis of Brønsted and Lewis acid sites in zeolites: A combined probe-assisted 1H MAS NMR and NH3-TPD investigation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100250-100250. doi: 10.1016/j.cjsc.2024.100250

    5. [5]

      Guo-Ping YinYa-Juan LiLi ZhangLing-Gao ZengXue-Mei LiuChang-Hua Hu . Citrinsorbicillin A, a novel homotrimeric sorbicillinoid isolated by LC-MS-guided with cytotoxic activity from the fungus Trichoderma citrinoviride HT-9. Chinese Chemical Letters, 2024, 35(8): 109035-. doi: 10.1016/j.cclet.2023.109035

    6. [6]

      Pengyu ChenBeibei ChenMan HeYuxi ZhouLei LeiJian HanBingsheng ZhouLigang HuBin Hu . Nanoplastics and nano-ZnO facilitate Cd accumulation in zebrafish larvae via a distinct pathway: Revelation by LA-ICP-MS imaging. Chinese Chemical Letters, 2025, 36(2): 109908-. doi: 10.1016/j.cclet.2024.109908

    7. [7]

      Dan ZhouLiangjin BaoHaoqi LongDuo ZhouYuwei XuBo WangChuanqin XiaLiang XianChengbin Zheng . Capillary electrophoresis as sample introduction system for highly sensitive and interference-free determination of 99Tc by ICP-MS. Chinese Chemical Letters, 2025, 36(4): 110093-. doi: 10.1016/j.cclet.2024.110093

    8. [8]

      Wantong ZhangZixing XuGuofei DaiZhijian LiChunhui Deng . Removal of Microcystin-LR in lake water sample by hydrophilic mesoporous silica composites under high-throughput MALDI-TOF MS detection platform. Chinese Chemical Letters, 2024, 35(5): 109135-. doi: 10.1016/j.cclet.2023.109135

    9. [9]

      Jun-Jie FangZheng LiuYun-Peng XieXing Lu . Superatomic Ag58 nanoclusters incorporating a [MS4@Ag12]2+ (M = Mo or W) kernel show aggregation-induced emission. Chinese Chemical Letters, 2024, 35(10): 109345-. doi: 10.1016/j.cclet.2023.109345

    10. [10]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    11. [11]

      Yong-Fang Shi Sheng-Hua Zhou Zuju Ma Xin-Tao Wu Hua Lin Qi-Long Zhu . From [Ba3S][GeS4] to [Ba3CO3][MS4] (M = Ge, Sn): Enhancing optical anisotropy in IR birefringent crystals via functional group implantation. Chinese Journal of Structural Chemistry, 2025, 44(1): 100455-100455. doi: 10.1016/j.cjsc.2024.100455

Metrics
  • PDF Downloads(5)
  • Abstract views(2226)
  • HTML views(221)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return