Applications of low temperature calorimetry in material research
- Corresponding author: Shi Quan, shiquan@dicp.ac.cn; shiquandicp@gmail.com
Citation:
Liu Xin, Luo Jipeng, Yin Nan, Tan Zhi-Cheng, Shi Quan. Applications of low temperature calorimetry in material research[J]. Chinese Chemical Letters,
;2018, 29(5): 664-670.
doi:
10.1016/j.cclet.2017.10.021
E.S.R. Gopal, Specific, Heats at Low Temperatures, International Cryogenics Monograph Series, Plenum Press, New York, 1966.
A. Tari, The Specific Heat of Matter at Low Temperatures, Imperial College Press, London, 2003.
H. Suga, Thermochim. Acta 355(2000) 69-82.
doi: 10.1016/S0040-6031(00)00438-X
H. Suga, Thermochim. Acta 377(2001) 35-49.
doi: 10.1016/S0040-6031(01)00540-8
M. Sorai, M. Nakano, Y. Miyazaki, Chem. Rev. 106(2006) 976-1031.
doi: 10.1021/cr960049g
H. Suga, Thermochim. Acta 328(1999) 9-17.
doi: 10.1016/S0040-6031(98)00618-2
H. Suga, J. Therm. Anal. Calorim. 80(2005) 49-55.
doi: 10.1007/s10973-005-0612-y
W. Zielenkiewicz, Pure Appl. Chem. 61(1989) 989-991.
doi: 10.1351/pac198961060989
T. Matsuo, O. Yamamuro, Thermochim. Acta 330(1999) 155-165.
doi: 10.1016/S0040-6031(99)00030-1
C. Schick, Eur. Phys. J. Spec. Top. 189(2010) 3-36.
doi: 10.1140/epjst/e2010-01307-y
J. McHugh, P. Fideu, A. Herrmann, W. Stark, Polym. Test. 29(2010) 759-765.
doi: 10.1016/j.polymertesting.2010.04.004
U. Zammit, M. Marinelli, F. Mercuri, S. Paoloni, F. Scudieri, Rev. Sci. Instrum. 82(2011) 121101.
doi: 10.1063/1.3663970
B. Zhao, L. Li, F. Lu, et al., Thermochim. Acta 603(2015) 2-23.
doi: 10.1016/j.tca.2014.09.005
E. Gmelin, J. Therm. Anal. Calorim. 56(1999) 655-671.
doi: 10.1023/A:1010133517896
B. Wunderlich, Thermochim. Acta 300(1997) 43-65.
doi: 10.1016/S0040-6031(96)03126-7
Y. Nakazawa, S. Yamashita, Chem. Lett. 42(2013) 1446-1454.
doi: 10.1246/cl.130656
M. Sorai, Y. Nakazawa, M. Nakano, Y. Miyazaki, Chem. Rev. 113(2013) PR41-PR122.
doi: 10.1021/cr300156s
R.D. Weir, E.F. Westrum Jr., J. Chem. Thermodyn. 73(2014) 31-35.
doi: 10.1016/j.jct.2013.07.006
J.M. Schliesser, B.F. Woodfield, J. Phys.:Condens. Matter. 27(2015) 285402.
doi: 10.1088/0953-8984/27/28/285402
J.M. Schliesser, B.F. Woodfield, Phys. Rev. B 91(2015) 024109.
doi: 10.1103/PhysRevB.91.024109
N.E. Phillips, Crt. Rev Solid State Sci. 2(1971) 467-533.
doi: 10.1080/10408437108243546
B.F. Woodfield, M.L. Wilson, J.M. Byers, Phys. Rev. Lett. 78(1997) 3201-3204.
doi: 10.1103/PhysRevLett.78.3201
B. Mihaila, C.P. Opeil, F.R. Drymiotis, et al., Phys. Rev. Lett. 96(2006) 076401.
doi: 10.1103/PhysRevLett.96.076401
C.L. Snow, Q. Shi, J. Boerio-Goates, B.F. Woodfield, J. Phys. Chem. C 114(2010) 21100-21108.
doi: 10.1021/jp1072704
A.H. Zittlau, Q. Shi, J. Boerio-Goates, B.F. Woodfield, J. Majzlan, Chemie der Erde 73(2013) 39-50.
doi: 10.1016/j.chemer.2012.12.002
Z. Tan, A. Yin, S. Chen, et al., Thermochim. Acta 123(1988) 105-111.
doi: 10.1016/0040-6031(88)80014-5
F. Li, Thermochim. Acta 253(1995) 189-194.
doi: 10.1016/0040-6031(94)02039-Q
Z. Tan, J. Ye, Y. Sun, et al., Thermochim. Acta 183(1991) 29-38.
doi: 10.1016/0040-6031(91)80442-L
Z. Tan, Q. Shi, B. Liu, et al., J. Therm. Anal. Calorim. 92(2008) 367-374.
doi: 10.1007/s10973-007-8954-2
J.C. Lashley, M.F. Hundley, A. Migliori, et al., Cryogenics 43(2003) 369-378.
doi: 10.1016/S0011-2275(03)00092-4
E. Dachs, C. Bertoldi, Eur. J. Miner. 17(2005) 251-261.
doi: 10.1127/0935-1221/2005/0017-0251
C.A. Kennedy, M. Stancescu, R.A. Marriott, et al., Cryogenics 47(2007) 107-112.
doi: 10.1016/j.cryogenics.2006.10.001
Q. Shi, C.L. Snow, J. Boerio-Goates, et al., J. Chem. Thermodyn. 42(2010) 1107-1115.
doi: 10.1016/j.jct.2010.04.008
Q. Shi, C.L. Snow, J. Boerio-Goates, B.F. Woodfield, J. Chem. Thermodyn. 43(2011) 1263-1269.
doi: 10.1016/j.jct.2011.03.018
T.H.K. Barron, G.K. White, Heat Capacity and Thermal Expansion at Low Temperatures, Kluwer Adademic/Plenum Publishers, New York, 1999.
J.B. Ott, J. Boerio-Goates, Chemical Thermodynamics:Principles and Applications, Academic Press, London, 2000.
W. Nernst, Sitzber. Preuss. Akad. Wiss. Berlin 12(1910) 261-292.
H.M. Huffman, Chem. Rev. 40(1) (1947) 1-14.
doi: 10.1021/cr60125a001
E.F. Westrum, J.B. Hatcher, S.W. Osborne, J. Chem. Phys. 21(1953) 419-423.
doi: 10.1063/1.1698923
T. Shinoda, H. Chihara, S. Seki, J. Phys. Soc. Jpn. 19(1964) 1637-1648.
doi: 10.1143/JPSJ.19.1637
G.T. Furukawa, M.L. Reily, J. Res. Natl. Bureau Stand. A Phys. Chem. 74(1970) 617-629.
M. Ueda, T.J. Matsuo, H. Suga, J. Phys. Chem. Solids 43(1982) 1165-1172.
doi: 10.1016/0022-3697(82)90145-7
J. Boerio-Goates, B.F. Woodfield, Can. J. Chem. 66(1988) 645-650.
doi: 10.1139/v88-111
T. Matsuo, Thermochim. Acta 163(1990) 57-70.
doi: 10.1016/0040-6031(90)80379-D
R.M. Varushchenko, A.I. Druzhinina, E.L. Sorkin, J. Chem. Thermodyn. 29(1997) 623-637.
doi: 10.1006/jcht.1996.0173
I.E. Paukov, I.A. Belitsky, Y.A. Kovaevskaya, J. Chem. Thermodyn. 33(2000) 1687-1696.
A.V. Blokhin, Y.U. Paulechka, G.J. Kabo, J. Chem. Eng. Data 51(2006) 1377-1388.
doi: 10.1021/je060094d
B.E. Lang, J. Boerio-Goates, B.F. Woodfield, J. Chem. Thermodyn. 38(2006) 1655-1663.
doi: 10.1016/j.jct.2006.03.016
Z. Tan, L. Wang, Q. Shi, Pure Appl. Chem. 81(2009) 1871-1880.
doi: 10.1351/PAC-CON-08-09-15
J. Boerio-Goates, G. Li, L. Li, et al., Nano Lett. 6(2006) 750-754.
doi: 10.1021/nl0600169
Q. Shi, J. Boerio-Goates, B.F. Woodfield, et al., J. Phys. Chem. C 116(2012) 3910-3917.
doi: 10.1021/jp2088862
J. Boerio-Goates, S.J. Smith, S.F. Liu, et al., J. Phys. Chem. C 117(2013) 4544-4550.
doi: 10.1021/jp310993w
L. Zhang, M.E. Schlesinger, R.K. Brow, J. Am. Ceram. Soc. 94(2011) 1605-1610.
doi: 10.1111/jace.2011.94.issue-5
L. Zhang, R.K. Brow, J. Am. Ceram. Soc. 94(2011) 3123-3130.
doi: 10.1111/jace.2011.94.issue-9
L. Zhang, R.K. Brow, M.E. Schlesinger, L. Ghussn, E.D. Zanotto, J. Non-Cryst. Solids 356(2010) 1252-1257.
doi: 10.1016/j.jnoncrysol.2010.04.019
L. Zhang, L. Ghussn, M.L. Schmitt, et al., J. Non-Cryst. Solids 356(2010) 2965-2968.
doi: 10.1016/j.jnoncrysol.2010.03.044
Q. Shi, L.Y. Zhang, M.E. Schlesinger, et al., J. Chem. Thermodyn. 62(2013) 35-42.
doi: 10.1016/j.jct.2013.02.017
Q. Shi, L.Y. Zhang, M.E. Schlesinger, et al., J. Chem. Thermodyn. 62(2013) 86-91.
doi: 10.1016/j.jct.2013.02.023
Q. Shi, L.Y. Zhang, M.E. Schlesinger, et al., J. Chem. Thermodyn. 61(2013) 53-57.
J. Haetge, C. Suchomski, T. Brezesinski, Inorg. Chem. 49(2010) 11619-11626.
doi: 10.1021/ic102052r
C. Yao, Q. Zeng, G.F. Goya, et al., Phys. Chem. C 111(2007) 12274-12278.
doi: 10.1021/jp0732763
M.R. Anantharaman, S. Jagatheesan, K.A. Malini, et al., J. Magn. Magn. Mater. 189(1998) 83-88.
doi: 10.1016/S0304-8853(98)00171-1
Y.N. Zhang, Q. Shi, J. Schliesser, et al., Inorg. Chem. 53(2014) 10463-10470.
doi: 10.1021/ic501487c
E.F. Westrum, D.M. Grimes, J. Phys. Chem. Solids 3(1957) 44-49.
doi: 10.1016/0022-3697(57)90046-X
X. Liu, J. Liu, S.H. Zhang, et al., J. Phys. Chem. C 120(2016) 1328-1334.
doi: 10.1021/acs.jpcc.5b10618
S. Kang, H. Zheng, T. Liu, et al., Nat. Commun. 6(2015) 5955.
doi: 10.1038/ncomms6955
T. Liu, H. Zheng, S. Kang, et al., Nat. Commun. 4(2013) 2826.
T. Nakamoto, Z.C. Tan, M. Sorai, Inorg. Chem. 40(2001) 3805-3809.
doi: 10.1021/ic010073z
M. Sorai, S. Seki, J. Phys. Chem. Solids 35(1974) 555-570.
doi: 10.1016/S0022-3697(74)80010-7
S.P. Chen, Q. Shi, Z.Q. Xia, et al., J. Chem. Thermodyn. 74(2014) 247-254.
doi: 10.1016/j.jct.2014.02.006
B.F. Woodfield, J.L. Shariro, R. Stevens, Rhys. Rev. B 60(1999) 7335-7340.
doi: 10.1103/PhysRevB.60.7335
Y.Z. Zheng, M. Evangelisti, F. Tuna, et al., J. Am. Chem. Soc. 134(2012) 1057-1065.
doi: 10.1021/ja208367k
P.S. Bechthold, S. Haussühl, E. Michael, et al., Phys. Lett. 65A (1978) 453-454.
A. Halliyal, A.S. Bhalla, S.A. Markgraf, L.E. Cross, R.E. Newnham, Ferroelectrics 62(1985) 27-38.
doi: 10.1080/00150198508017915
Z. Ding, Y. Zhao, W. Wang, Y. Huang, J. Non-Cryst. Solids 112(1989) 258-262.
doi: 10.1016/0022-3093(89)90532-2
Q. Shi, T.J. Park, J. Schliesser, et al., J. Chem. Thermodyn. 72(2014) 77-84.
doi: 10.1016/j.jct.2014.01.021
W.N. Lawless, Phys. Rev. B 25(1982) 1730-1733.
doi: 10.1103/PhysRevB.25.1730
E. Gmelin, G. Burns, Phys. Rev. B 38(1988) 442-444.
doi: 10.1103/PhysRevB.38.442
D. Zhou, C.Y. Zhao, Y. Tian, Appl. Energy 92(2012) 593-605.
doi: 10.1016/j.apenergy.2011.08.025
D.C. Hyun, N.S. Levinson, U. Jeong, Y. Xia, Angew. Chem. Int. Ed. Engl. 53(2014) 3780-3795.
doi: 10.1002/anie.201305201
D.F. Lu, Y.Y. Di, D.H. He, Renew. Energy 50(2013) 498-505.
doi: 10.1016/j.renene.2012.07.016
Z.C. Tan, J.C. Ye, A.X. Yin, et al., Chin. Sci. Bull. 32(1987) 240-246.
Q. Shi, Z.C. Tan, Y.Y. Di, et al., J. Chem. Eng. Data 52(2007) 941-947.
doi: 10.1021/je6005423
T. Park, F. Ronning, H.Q. Yuan, et al., Nature 440(2006) 65-68.
doi: 10.1038/nature04571
J. Kinast, A. Turlapov, J.E. Thomas, et al., Science 307(2005) 1296-1299.
doi: 10.1126/science.1109220
A.W. Rost, R.S. Perry, J.F. Mercure, et al., Science 325(2009) 1360-1363.
doi: 10.1126/science.1176627
Fangzhou Wang , Wentong Gao , Chenghui Li . A weak but inert hindered urethane bond for high-performance dynamic polyurethane polymers. Chinese Chemical Letters, 2024, 35(5): 109305-. doi: 10.1016/j.cclet.2023.109305
Ying-Yu Zhang , Jia-Qi Luo , Yan Han , Wan-Ying Zhang , Yi Zhang , Hai-Feng Lu , Da-Wei Fu . Bistable switch molecule DPACdCl4 showing four physical channels and high phase transition temperature. Chinese Chemical Letters, 2025, 36(1): 109530-. doi: 10.1016/j.cclet.2024.109530
Kun Zhang , Ni Dan , Dan-Dan Ren , Ruo-Yu Zhang , Xiaoyan Lu , Ya-Pan Wu , Li-Lei Zhang , Hong-Ru Fu , Dong-Sheng Li . A small D-A molecule with highly heat-resisting room temperature phosphorescence for white emission and anti-counterfeiting. Chinese Journal of Structural Chemistry, 2024, 43(3): 100244-100244. doi: 10.1016/j.cjsc.2024.100244
Jiayin Zhou , Depeng Liu , Longqiang Li , Min Qi , Guangqiang Yin , Tao Chen . Responsive organic room-temperature phosphorescence materials for spatial-time-resolved anti-counterfeiting. Chinese Chemical Letters, 2024, 35(11): 109929-. doi: 10.1016/j.cclet.2024.109929
Xinyu Yu , Fei Wu , Xianglang Sun , Linna Zhu , Baoyu Xia , Zhong'an Li . Low-cost dopant-free fluoranthene-based branched hole transporting materials for efficient and stable n-i-p perovskite solar cells. Chinese Chemical Letters, 2024, 35(10): 109821-. doi: 10.1016/j.cclet.2024.109821
Linjing Li , Wenlai Xu , Jianyong Ning , Yaping Zhong , Chuyue Zhang , Jiane Zuo , Zhicheng Pan . Revealing the intrinsic mechanisms for accelerating nitrogen removal efficiency in the Anammox reactor by adding Fe(II) at low temperature. Chinese Chemical Letters, 2024, 35(8): 109243-. doi: 10.1016/j.cclet.2023.109243
Shaohua Zhang , Liyao Liu , Yingqiao Ma , Chong-an Di . Advances in theoretical calculations of organic thermoelectric materials. Chinese Chemical Letters, 2024, 35(8): 109749-. doi: 10.1016/j.cclet.2024.109749
Junjie Wang , Yan Wang , Zhengdong Li , Changqiang Xie , Musammir Khan , Xingzhou Peng , Fabiao Yu . Triphenylamine-AIEgens photoactive materials for cancer theranostics. Chinese Chemical Letters, 2024, 35(6): 108934-. doi: 10.1016/j.cclet.2023.108934
Yifan LIU , Zhan ZHANG , Rongmei ZHU , Ziming QIU , Huan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008
Lijun Yan , Shiqi Chen , Penglu Wang , Xiangyu Liu , Lupeng Han , Tingting Yan , Yuejin Li , Dengsong Zhang . Hydrothermally stable metal oxide-zeolite composite catalysts for low-temperature NOx reduction with improved N2 selectivity. Chinese Chemical Letters, 2024, 35(6): 109132-. doi: 10.1016/j.cclet.2023.109132
Rui PAN , Yuting MENG , Ruigang XIE , Daixiang CHEN , Jiefa SHEN , Shenghu YAN , Jianwu LIU , Yue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433
Chao Ma , Cong Lin , Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209
Yuhan Wu , Qing Zhao , Zhijie Wang . Layered vanadium oxides: Promising cathode materials for calcium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(5): 100271-100271. doi: 10.1016/j.cjsc.2024.100271
Pingfan Zhang , Shihuan Hong , Ning Song , Zhonghui Han , Fei Ge , Gang Dai , Hongjun Dong , Chunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073
Gaojie Zhu , Zhen Yang , Shijun Li , Weihua Zhu , Rui Cao , Junlong Zhang , Jianzhang Zhao , Jonathan L. Sessler , Xunjin Zhu , Jianxin Song , Yongshu Xie , Jianzhuang Jiang . The 2nd Asian Conference on Porphyrins, Phthalocyanines and Related Materials. Chinese Chemical Letters, 2024, 35(7): 109535-. doi: 10.1016/j.cclet.2024.109535
Yuqing Zhu , Haohao Chen , Li Wang , Liqun Ye , Houle Zhou , Qintian Peng , Huaiyong Zhu , Yingping Huang . Piezoelectric materials for pollutants degradation: State-of-the-art accomplishments and prospects. Chinese Chemical Letters, 2024, 35(4): 108884-. doi: 10.1016/j.cclet.2023.108884
Fangling Cui , Zongjie Hu , Jiayu Huang , Xiaoju Li , Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337
Runjing Xu , Xin Gao , Ya Chen , Xiaodong Chen , Lifeng Cui . Research status and prospect of rechargeable magnesium ion batteries cathode materials. Chinese Chemical Letters, 2024, 35(11): 109852-. doi: 10.1016/j.cclet.2024.109852
Genlin Sun , Yachun Luo , Zhihong Yan , Hongdeng Qiu , Weiyang Tang . Chiral metal-organic frameworks-based materials for chromatographic enantioseparation. Chinese Chemical Letters, 2024, 35(12): 109787-. doi: 10.1016/j.cclet.2024.109787
Xiaoxue Li , Hongwei Zhou , Rongrong Qian , Xu Zhang , Lei Yu . A concise synthesis of Se/Fe materials for catalytic oxidation reactions of anthracene and polyene. Chinese Chemical Letters, 2025, 36(3): 110036-. doi: 10.1016/j.cclet.2024.110036