Citation: Song Xiaoyu, Zhao Jing, Zhang Wandong, Chen Long. Novel n-channel organic semiconductor based on pyrene-phenazine fused monoimide and bisimides[J]. Chinese Chemical Letters, ;2018, 29(2): 331-335. doi: 10.1016/j.cclet.2017.09.015 shu

Novel n-channel organic semiconductor based on pyrene-phenazine fused monoimide and bisimides

  • Corresponding author: Zhang Wandong, zhangwandong@tju.edu.cn Chen Long, long.chen@tju.edu.cn
  • Received Date: 4 July 2017
    Revised Date: 12 August 2017
    Accepted Date: 25 August 2017
    Available Online: 21 February 2017

Figures(8)

  • Large π-conjugated pyrene-phenazine monoimide and bisimides were synthesized by imine condensation reaction. These imides form well ordered 1D nanotapes upon self-assembly in solution. Electrochemical and electric conductivity measurement reveal it can be served as an n-channel semiconductor with large charge carrier mobility up to 4.1 cm2 V-1 s-1. Both alkylated imides are highly luminescent, and can be quenched via protonization using trifluoroacetic acid, which could be served as potential colorimetric acid sensors.
  • 加载中
    1. [1]

      (a) K. Müllen, U. Scherf, Organic Light Emitting-Devices: Synthesis, Properties and Applications, Wiley-VCH, Weinheim, 2006;
      (b) M. Pope, C. E. Swenberg, Electronic Processes in Organic Crystals and Polymers, Oxford University Press Inc., Oxford, 1999;
      (c) H. Inokuchi, Org. Electron. 7(2006) 62-76;
      (d) H. Klauk, Organic Electronics: Materials, Manufacturing and Applications, Wiley-VCH, Weinheim, 2006.

    2. [2]

      (a) J. E. Anthony, Chem. Rev. 106(2006) 5028-5048;
      (b) A. R. Murphy, J. M. J. Fréchet, Chem. Rev. 107(2007) 1066-1096;
      (c) J. Zaumseil, H. Sirringhaus, Chem. Rev. 107(2007) 1296-1323.

    3. [3]

      (a) Z. Bao, A. J. Lovinger, J. Brown, J. Am. Chem. Soc. 120(1998) 207-208;
      (b) Y. Sakamoto, T. Suzuki, A. Miura, et al., J. Am Chem. Soc. 122(2000) 1832-1833;
      (c) S. B. Heidenhain, Y. Sakamoto, T. Suzuki, et al., J. Am. Chem. Soc. 122(2000) 10240-10241;
      (d) Y. Sakamoto, K. Shingo, T. Suzuki, J. Am. Chem. Soc. 23(2001) 4643-4644;
      (e) A. Facchetti, M. H. Yoon, C. L. Stern, et al., J. Am. Chem. Soc. 126(2004) 13480-13501;
      (f) M. Fachetti, et al., Adv. Mater. 15(2003) 33-38.

    4. [4]

      (a) M. Strukelj, F. Papadimitrakopoulos, T. M. Miller, et al., Science 267(1995) 1969-1972;
      (b) C. J. Tonzola, M. M. Alam, W. Kaminsky, et al., J. Am. Chem. Soc. 125(2003) 13548-13558;
      (c) T. W. Kwon, M. M. Alam, S. A. Jenekhe, Chem. Mater. 16(2004) 4657-4666.

    5. [5]

      (a) B. C. Thompson, J. M. J. Fréchet, Angew. Chem. 120(2007) 62-82;
      (b) B. C. Thompson, J. M. J. Fréchet, Angew. Chem. Int. Ed. 47(2008) 58-77.

    6. [6]

      (a) H. E. Katz, A. J. Lovinger, J. Johnson, et al., Nature 404(2000) 478-481;
      (b) L. L. Miller, K. R. Mann, Acc. Chem. Res. 29(1996) 417-423;
      (c) B. A. Gregg, R. A. Cormier, J. Am. Chem. Soc. 123(2001) 7959-7960;
      (d) B. A. Jones, A. Facchetti, M. R. Wasielewski, et al., J. Am. Chem. Soc. 129(2007) 15259-15278.

    7. [7]

      (a) Z. Wang, C. Kim, A. Facchetti, et al., J. Am. Chem. Soc. 129(2007) 13362-13363;
      (b) X. K. Gao, Y. Wang, X. D. Yang, et al., Adv. Mater. 19(2007) 3037-3042;
      (c) F. Ilhan, D. S. Tyson, D. J. Stasko, et al., J. Am. Chem. Soc. 128(2006) 702-703.

    8. [8]

      (a) B. Gao, M. Wang, Y. Cheng, et al., J. Am. Chem. Soc. 130(2008) 8297-8306;
      (b) D. C. Lee, K. Jang, K. K. McGrath, et al., Chem. Mater. 20(2008) 3688-3695.

    9. [9]

      J. Hu, D. Zhang, S.Z.D. Cheng, et al., Chem. Mater. 16(2004) 4912-4915.  doi: 10.1021/cm0492179

    10. [10]

      J. Cornil, V. Lemaur, J.P. Calbert, et al., Adv. Mater. 14(2002) 726-729.  doi: 10.1002/1521-4095(20020517)14:10<726::AID-ADMA726>3.0.CO;2-D

    11. [11]

      (a) L. Yu, M. Chen, L. R. Dalton, Chem. Mater. 2(1990) 649-659;
      (b) J. K. Stille, E. L. Mainen, Macromolecules 1(1968) 36-42;
      (c) T. Yamamoto, K. Sugiyama, T. Kushida, et al., J. Am. Chem. Soc. 118(1996) 3930-3937;
      (d) C. Y. Zhang, J. M. Tour, J. Am. Chem. Soc. 121(1999) 8783-8790.

    12. [12]

      H. Du, R.A. Fuh, J. Li, et al., Photochem. Photobiol. 68(1998) 141-142.
       

    13. [13]

      (a) K. Balakrishan, A. Datar, T. Naddo, et al., J. Am. Chem. Soc. 128(2006) 7390-7398;
      (b) Y. Che, D. Aniket, X. Yang, et al., J. Am. Chem. Soc. 129(2007) 6354-6355;
      (c) Y. Che, A. Datar, K. Balakrishan, et al., J. Am. Chem. Soc. 129(2007) 7234-7235.

    14. [14]

      Y. Che, X. Yang, S. Loser, et al., Nano Lett. 8(2008) 2219-2223.  doi: 10.1021/nl080761g

    15. [15]

      (a) A. Acharya, S. Seki, Y. Koizumi, et al., J. Phys. Chem. B 109(2005) 20174-20179;
      (b) A. Saeki, S. Seki, T. Takenobu, et al., Adv. Mater. 20(2008) 920-923.

    16. [16]

      (a) A. Acharya, S. Seki, Y. Koizumi, et al., J. Phys. Chem. B 109(2005) 20174-20179;
      (b) A. Saeki, S. Seki, T. Takenobu, et al., Adv. Mater. 20(2008) 920-923;
      (c) Y. Yamamoto, T. Fukushima, Y. Suna, et al., Science 314(2006) 1761-1764;
      (d) T. Amaya, S. Seki, T. Moriuchi, et al., J. Am. Chem. Soc. 131(2009) 408-409;
      (e) W. S. Li, Y. Yamamoto, T. Fukushima, et al., J. Am. Chem. Soc. 130(2008) 8886-8887.

    17. [17]

      D.C. Lee, K.K. McGrath, K. Jang, Chem. Commun. (2008) 3636-3638.
       

    18. [18]

      J. Hu, D. Zhang, F.W. Harris, J. Org. Chem. 70(2005) 707-708.
       

  • 加载中
    1. [1]

      Yuqing DingZhiying YiZhihui WangHongyu ChenYan Zhao . Liquid nitrogen post-treatment for improved aggregation and electrical properties in organic semiconductors. Chinese Chemical Letters, 2024, 35(12): 109918-. doi: 10.1016/j.cclet.2024.109918

    2. [2]

      Xin JiangHan JiangYimin TangHuizhu ZhangLibin YangXiuwen WangBing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415

    3. [3]

      Shengdong Sun Cheng Wang Shikuo Li . Interfacial channel design on the charge migration for photoelectrochemical applications. Chinese Journal of Structural Chemistry, 2024, 43(12): 100398-100398. doi: 10.1016/j.cjsc.2024.100398

    4. [4]

      Junying LIXinyan CHENXihui DIAOMuhammad YaseenChao CHENHao WANGChuansong QIWei LI . Chiral fluorescent sensor Tb3+@Cd-CP based on camphoric acid for the enantioselective recognition of R- and S-propylene glycol. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2497-2504. doi: 10.11862/CJIC.20240084

    5. [5]

      Long TANGYaxin BIANLuyuan CHENXiangyang HOUXiao WANGJijiang WANG . Syntheses, structures, and properties of three coordination polymers based on 5-ethylpyridine-2,3-dicarboxylic acid and N-containing ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1975-1985. doi: 10.11862/CJIC.20240180

    6. [6]

      Jingtai BiYupeng ChengMengmeng SunXiaofu GuoShizhao WangYingying Zhao . Efficient and selective photocatalytic nitrite reduction to N2 through CO2 anion radical by eco-friendly tartaric acid activation. Chinese Chemical Letters, 2024, 35(11): 109639-. doi: 10.1016/j.cclet.2024.109639

    7. [7]

      Fei Jin Bolin Yang Xuanpu Wang Teng Li Noritatsu Tsubaki Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198

    8. [8]

      Xueling YuLixing FuTong WangZhixin LiuNa NiuLigang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167

    9. [9]

      Guixu Pan Zhiling Xia Ning Wang Hejia Sun Zhaoqi Guo Yunfeng Li Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2024.100463

    10. [10]

      Tian CaoXuyin DingQiwen PengMin ZhangGuoyue Shi . Intelligent laser-induced graphene sensor for multiplex probing catechol isomers. Chinese Chemical Letters, 2024, 35(7): 109238-. doi: 10.1016/j.cclet.2023.109238

    11. [11]

      Neng ShiHaonan JiaJixiang ZhangPengyu LuChenglong CaiYixin ZhangLiqiang ZhangNongyue HeWeiran ZhuYan CaiZhangqi FengTing Wang . Accurate expression of neck motion signal by piezoelectric sensor data analysis. Chinese Chemical Letters, 2024, 35(9): 109302-. doi: 10.1016/j.cclet.2023.109302

    12. [12]

      Jing ChenPeisi XiePengfei WuYu HeZian LinZongwei Cai . MALDI coupled with laser-postionization and trapped ion mobility spectrometry contribute to the enhanced detection of lipids in cancer cell spheroids. Chinese Chemical Letters, 2024, 35(4): 108895-. doi: 10.1016/j.cclet.2023.108895

    13. [13]

      Jing GuoZhi-Guo LuRui-Chen ZhaoBao-Ku LiXin Zhang . Nucleic acid therapy for metabolic-related diseases. Chinese Chemical Letters, 2025, 36(3): 109875-. doi: 10.1016/j.cclet.2024.109875

    14. [14]

      Ying ChenLi LiJunyao ZhangTongrui SunXuan ZhangShiqi ZhangJia HuangYidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102

    15. [15]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    16. [16]

      Xiangshuai LiJian ZhaoLi LuoZhuohao JiaoYing ShiShengli HouBin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407

    17. [17]

      Bing ShenTongwei YuanWenshuang ZhangYang ChenJiaqiang Xu . Complex shell Fe-ZnO derived from ZIF-8 as high-quality acetone MEMS sensor. Chinese Chemical Letters, 2024, 35(11): 109490-. doi: 10.1016/j.cclet.2024.109490

    18. [18]

      Qinghong PanHuafang ZhangQiaoling LiuDonghong HuangDa-Peng YangTianjia JiangShuyang SunXiangrong Chen . A self-powered cathodic molecular imprinting ultrasensitive photoelectrochemical tetracycline sensor via ZnO/C photoanode signal amplification. Chinese Chemical Letters, 2025, 36(1): 110169-. doi: 10.1016/j.cclet.2024.110169

    19. [19]

      Yubin FengWeihang ZhuXinting YangZhe YangChenke WeiYukai GuoAndrew K. WhittakerChun ShenYue ZhaoWenrui QuBai YangQuan Lin . Amphibian-inspired conductive ionogel stabilizing in air/water as a wearable amphibious flexible sensor for drowning alarms. Chinese Chemical Letters, 2025, 36(4): 110554-. doi: 10.1016/j.cclet.2024.110554

    20. [20]

      Yijian ZhaoJvzhe LiYunyi ShiJie HuMeiyi LiuYao ShenXinglin HouQiuyue WangQi WangZhiyi Yao . A label-free and ratiometric fluorescent sensor based on porphyrin-metal-organic frameworks for sensitive detection of ochratoxin A in cereal. Chinese Chemical Letters, 2025, 36(4): 110132-. doi: 10.1016/j.cclet.2024.110132

Metrics
  • PDF Downloads(4)
  • Abstract views(714)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return