Nanostructured perovskite oxides as promising substitutes of noble metals catalysts for catalytic combustion of methane
- Corresponding author: Guo Yanbing, guoyanbing@mail.ccnu.edu.cn
Citation:
Yang Ji, Guo Yanbing. Nanostructured perovskite oxides as promising substitutes of noble metals catalysts for catalytic combustion of methane[J]. Chinese Chemical Letters,
;2018, 29(2): 252-260.
doi:
10.1016/j.cclet.2017.09.013
H. Herzog, D. Golomb, Encycl. Energy 1(2004) 1-11.
X. Li, Y. Liu, J. Deng, Y. Zhang, et al., Appl. Surf. Sci. 403(2017) 590-600.
doi: 10.1016/j.apsusc.2017.01.237
F.F. Tao, J. Shan, L. Nguyen, et al., Nat. Commun. 6(2015) 1-9.
N.M. Kinnunen, J.T. Hirvi, K. Kallinen, et al., Appl. Catal. B:Environ. 207(2017) 114-119.
doi: 10.1016/j.apcatb.2017.02.018
E. Campagnoli, A.C. Tavares, L. Fabbrini, et al., J. Mater. Sci. 41(2006) 4713-4719.
doi: 10.1007/s10853-006-0057-0
L.L. Smith, H. Karim, M.J. Castaldi, S. Etemad, W.C. Pfefferle, Catal. Today 117(2006) 438-446.
doi: 10.1016/j.cattod.2006.06.021
Y. Wang, M. Guo, J. Lu, M. Luo, Chin. J. Catal. 32(2011) 1496-1501.
W.R. Schwartz, D. Ciuparu, L.D. Pfefferle, J. Phys. Chem. C 116(2012) 8587-8593.
doi: 10.1021/jp212236e
V. Viitanen, H. Jiang, M. Honkanen, et al., Top. Catal. 56(2013) 576-585.
doi: 10.1007/s11244-013-0017-2
J. Li, J. Zhang, Z. Lei, B. Chen, Energy Fuels 26(2012) 1-8.
doi: 10.1021/ef2018786
Z. Ren, Y. Guo, P.X. Gao, Catal. Today 258(2015) 448-453.
J. Deng, L. Zhang, H. Dai, H. He, C. Tong, J. Mol. Catal. A:Chem. 299(2009) 60-67.
doi: 10.1016/j.molcata.2008.10.006
S. Ponce, M.A. Peña, J.L.G. Fierro, Appl. Catal. B:Environ. 24(2000) 193-205.
doi: 10.1016/S0926-3373(99)00111-3
J. Niu, J. Deng, W. Liu, et al., Catal. Today 126(2007) 420-429.
doi: 10.1016/j.cattod.2007.06.027
Y.H. Chin, C. Buda, M. Neurock, E. Iglesia, J. Am. Chem. Soc.135(2013) 15425-15442.
doi: 10.1021/ja405004m
Y. Feng, P.M. Rao, D.R. Kim, X. Zheng, Proc. Combust. Inst. 33(2011) 3169-3175.
doi: 10.1016/j.proci.2010.05.017
Y. Zhang, Z. Qin, G. Wang, et al., Appl. Catal. B:Environ. 129(2013) 172-181.
doi: 10.1016/j.apcatb.2012.09.021
M.A. Peña, J.L.G. Fierro, Chem. Rev. 101(2001) 1981-2018.
doi: 10.1021/cr980129f
R. Auer, F.C. Thyrion, Ind. Eng. Chem. Res. 41(2002) 680-690.
doi: 10.1021/ie0104924
F. Zasada, J. Janas, W. Piskorz, M. Gorczynska, Z. Sojka, ACS Catal. 7(2017) 2853-2867.
doi: 10.1021/acscatal.6b03139
H. Zhu, P. Zhang, S. Dai, ACS Catal. 5(2015) 6370-6385.
doi: 10.1021/acscatal.5b01667
J. Zhu, A. Thomas, Appl. Catal. B:Environ. 92(2009) 225-233.
doi: 10.1016/j.apcatb.2009.08.008
W. Si, Y. Wang, Y. Peng, J. Li, Angew. Chem. Int. Ed. 54(2015) 7954-7957.
doi: 10.1002/anie.201502632
W. Tang, X. Wu, D. Li, et al., J. Mater. Chem. A 8(2014) 2544-2554.
L. Hu, K. Sun, Q. Peng, B. Xu, Y. Li, Nano Res. 3(2010) 363-368.
doi: 10.1007/s12274-010-1040-2
F. Ma, Y. Chen, H. Lou, Kinet. Catal. Lett. 31(1986) 47-53.
doi: 10.1007/BF02062510
S. Royer, D. Duprez, S. Kaliaguine, J. Catal. 234(2005) 364-375.
doi: 10.1016/j.jcat.2004.11.041
M. Alifanti, J. Kirchnerova, B. Delmon, D. Klvana, Appl. Catal. A:Gen. 262(2004) 167-176.
doi: 10.1016/j.apcata.2003.11.024
N. Yamazoe, Y. Teraoka, T. Seiyama, Chem. Lett. 10(1981) 1767-1770.
doi: 10.1246/cl.1981.1767
T. Nakamura, M. Misono, Y. Yoneda, Chem. Lett. (1981) 1589-1592.
L. Li, G. Li, J. Xiang, R.L. Smith, H. Inomata, Chem. Mater. 15(2003) 889-898.
doi: 10.1021/cm020582e
X. Wang, K. Huang, W. Ma, et al., Chem. Eur. J. 23(2017) 1093-1100.
doi: 10.1002/chem.201604065
Z. Ren, V. Botu, S. Wang, et al., Angew. Chem. Int. Ed. 53(2014) 7223-7227.
doi: 10.1002/anie.201403461
Y. Liu, H. Zheng, J. Liu, T. Zhang, J. Chem Eng, 89(2002) 213-221.
doi: 10.1016/S1385-8947(02)00013-X
H. Arandiyan, H. Chang, C. Liu, Y. Peng, J. Li, J. Mol. Catal. A:Chem. 378(2013) 299-306.
doi: 10.1016/j.molcata.2013.06.019
X. Du, G. Zou, Y. Zhang, X. Wang, J. Mater. Chem. A 1(2013) 8411-8416.
doi: 10.1039/c3ta11129f
N. Gunasekaran, S. Saddawi, J.J. Carberry, J. Catal. 111(1996) 107-111.
H. Arandiyan, H. Dai, J. Deng, et al., J. Catal. 307(2013) 327-339.
doi: 10.1016/j.jcat.2013.07.013
S. Wang, Z. Ren, W. Song, et al., Catal.Today 258(2015) 549-555.
doi: 10.1016/j.cattod.2015.03.026
D. Jian, P.X. Gao, W. Cai, et al., J. Mater. Chem. 19(2009) 970-975.
doi: 10.1039/b817235h
H.Y. Gao, W.J. Cai, P. Shimpi, H.J. Lin, P.X. Gao, J. Phys. D:Appl. Phys. 43(2010) 1-6.
H. Taguchi, K. Nakade, M. Yosinaga, M. Kato, K. Hirota, J. Am. Ceram. Soc. 310(2008) 2007-2009.
H. Najjar, J. Lamonier, O. Mentré, J. Giraudon, H. Batis, Catal. Sci. Technol. 3(2013) 1002-1016.
doi: 10.1039/c2cy20645e
F. Huang, X. Wang, A. Wang, J. Xua, T. Zhang, Catal. Sci. Technol. 6(2016) 4962-4969.
doi: 10.1039/C5CY02187A
J.S. Yoon, Y. Lim, B.H. Choi, H.J. Hwang, Int. J. Hydrogen Energy 39(2014) 7955-7962.
doi: 10.1016/j.ijhydene.2014.03.008
H. Najjara, H. Batisb, J. Lamoniera, O. Mentréa, J. Giraudon, Appl. Catal. A:Gene 469(2014) 98-107.
doi: 10.1016/j.apcata.2013.09.014
J. Chen, W. Shi, X. Zhang, et al., Environ. Sci. Technol. 45(2011) 8491-8497.
doi: 10.1021/es201659h
G. Pecchi, M.G. Jiliberto, A. Buljan, E.J. Delgado, Solid State Ionics 187(2011) 27-32.
doi: 10.1016/j.ssi.2011.02.014
X. Xiang, L. Zhao, B. Teng, et al., Appl. Surf. Sci. 276(2013) 328332.
R. Hu, Y. Bai, H. Du, et al., J. Rare Earth 33(2015) 1284.
doi: 10.1016/S1002-0721(14)60558-5
H. Falcon, J.A. Barbero, J.A. Alonso, M.J. Mart, J.L.G. Fierro, Chem. Mater. 14(2002) 2325-2333.
doi: 10.1021/cm011292l
R.M. Garcíade la Cruz, H. Falcón, M.A. Peña, J.L.G. Fierro, Appl. Catal. B:Environ. 33(2001) 45-55.
doi: 10.1016/S0926-3373(01)00157-6
S.T. Aruna, M. Muthuraman, K.C. Patil, Solid State Ionics 120(1999) 275-280.
doi: 10.1016/S0167-2738(99)00021-1
Y. Wang, J. Ren, Y. Wang, et al., J. Phys. Chem. C 112(2008) 15293-15298.
doi: 10.1021/jp8048394
H.M. Zhang, Y. Shimizu, Y. Teraoka, N. Miura, N. Yamazoe, J. Catal. 121(1990) 423-440.
L. Nie, J. Wang, Q. Tan, Catal. Commun. 97(2017) 1-4.
doi: 10.1016/j.catcom.2017.04.010
J.W. Kim, K. Tazumi, R. Okaji, M. Ohshima, Chem. Mater. 21(2009) 3476-3478.
doi: 10.1021/cm901265y
H. Arandiyan, J. Scott, Y. Wang, et al., ACSAppl. Mater. Interfaces8(2016) 2457-2463.
doi: 10.1021/acsami.5b11050
Y. Wang, H. Arandiyan, H.A. Tahini, et al., Nat Commun. 8(2017) 15553.
doi: 10.1038/ncomms15553
H. Arandiyan, H. Dai, J. Deng, et al., Chem. Commun. 49(2013) 10748-10750.
doi: 10.1039/c3cc46312e
H. Arandiyan, H. Dai, J. Deng, et al., J. Phys. Chem. C 118(2014) 14913-14928.
P. Xu, X. Zhao, X. Zhang, et al., Mol. Catal. 439(2017) 200-210.
doi: 10.1016/j.mcat.2017.06.036
Y. Wang, H. Arandiyan, J. Scott, et al., ACS Catal. 6(2016) 6935-6947.
doi: 10.1021/acscatal.6b01685
X. Li, Y. Liu, J. Deng, et al., Appl. Surf. Sci. 403(2017) 590-600.
doi: 10.1016/j.apsusc.2017.01.237
X. Li, H. Dai, J. Deng, et al., Chem. Eng. J. 228(2013) 965-975.
doi: 10.1016/j.cej.2013.05.070
Y. Liu, H. Dai, J. Deng, et al., J. Catal. 305(2013) 146-153.
doi: 10.1016/j.jcat.2013.04.025
Y. Liu, H. Dai, J. Deng, et al., Appl. Catal. B:Environ. 140-141(2013) 493-505.
K. Ji, H. Dai, J. Deng, et al., Appl. Catal. B:Environ. 129(2013) 539-548.
doi: 10.1016/j.apcatb.2012.10.005
X. Xie, Y. Li, Z. Liu, M. Haruta, W. Shen, Nature 458(2009) 746-749.
doi: 10.1038/nature07877
Y. Guo, Z. Ren, W. Xiao, et al., Nano Energy 2(2013) 873-881.
doi: 10.1016/j.nanoen.2013.03.004
Y. Guo, Z. Zhang, Z. Ren, H. Gao, P.X. Gao, Catal. Today 184(2012) 178-183.
doi: 10.1016/j.cattod.2011.10.027
L. Zhang, Y. Zhang, H. Dai, et al., Catal. Today 153(2010) 143-149.
doi: 10.1016/j.cattod.2010.02.059
Fanxin Kong , Hongzhi Wang , Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287
Tinghui Yang , Min Kuang , Jianping Yang . Mesoporous CuCe dual-metal catalysts for efficient electrochemical reduction of CO2 to methane. Chinese Journal of Structural Chemistry, 2024, 43(8): 100350-100350. doi: 10.1016/j.cjsc.2024.100350
Guang-Xu Duan , Queting Chen , Rui-Rui Shao , Hui-Huang Sun , Tong Yuan , Dong-Hao Zhang . Encapsulating lipase on the surface of magnetic ZIF-8 nanosphers with mesoporous SiO2 nano-membrane for enhancing catalytic performance. Chinese Chemical Letters, 2025, 36(2): 109751-. doi: 10.1016/j.cclet.2024.109751
Zeyu Jiang , Yadi Wang , Changwei Chen , Chi He . Progress and challenge of functional single-atom catalysts for the catalytic oxidation of volatile organic compounds. Chinese Chemical Letters, 2024, 35(9): 109400-. doi: 10.1016/j.cclet.2023.109400
Peng Zhang , Yitao Yang , Tian Qin , Xueqiu Wu , Yuechang Wei , Jing Xiong , Xi Liu , Yu Wang , Zhen Zhao , Jinqing Jiao , Liwei Chen . Interface engineering of Pt/CeO2-{100} catalysts for enhancing catalytic activity in auto-exhaust carbon particles oxidation. Chinese Chemical Letters, 2025, 36(2): 110396-. doi: 10.1016/j.cclet.2024.110396
Yanling Yang , Zhenfa Ding , Huimin Wang , Jianhui Li , Yanping Zheng , Hongquan Guo , Li Zhang , Bing Yang , Qingqing Gu , Haifeng Xiong , Yifei Sun . Dynamic tracking of exsolved PdPt alloy/perovskite catalyst for efficient lean methane oxidation. Chinese Chemical Letters, 2024, 35(4): 108585-. doi: 10.1016/j.cclet.2023.108585
Xiaoxue Li , Hongwei Zhou , Rongrong Qian , Xu Zhang , Lei Yu . A concise synthesis of Se/Fe materials for catalytic oxidation reactions of anthracene and polyene. Chinese Chemical Letters, 2025, 36(3): 110036-. doi: 10.1016/j.cclet.2024.110036
Shiqi Peng , Yongfang Rao , Tan Li , Yufei Zhang , Jun-ji Cao , Shuncheng Lee , Yu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219
Dongsheng Yang , Zixin Li , Yaoyao Lian , Ziyao Fu , Tianjiao Li , Pengtao Ma , Guoping Yang . A novel square-shaped Zr-substituted polyoxotungstate for the efficient catalytic oxidation of sulfide to sulfone. Chinese Chemical Letters, 2025, 36(3): 109717-. doi: 10.1016/j.cclet.2024.109717
Tao Ban , Xi-Yang Yu , Hai-Kuo Tian , Zheng-Qing Huang , Chun-Ran Chang . One-step conversion of methane and formaldehyde to ethanol over SA-FLP dual-active-site catalysts: A DFT study. Chinese Chemical Letters, 2024, 35(4): 108549-. doi: 10.1016/j.cclet.2023.108549
Ke Wang , Jia Wu , Shuyi Zheng , Shibin Yin . NiCo Alloy Nanoparticles Anchored on Mesoporous Mo2N Nanosheets as Efficient Catalysts for 5-Hydroxymethylfurfural Electrooxidation and Hydrogen Generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100104-100104. doi: 10.1016/j.cjsc.2023.100104
Zimo Peng , Quan Zhang , Gaocan Qi , Hao Zhang , Qian Liu , Guangzhi Hu , Jun Luo , Xijun Liu . Nanostructured Pt@RuOx catalyst for boosting overall acidic seawater splitting. Chinese Journal of Structural Chemistry, 2024, 43(1): 100191-100191. doi: 10.1016/j.cjsc.2023.100191
Kunsong Hu , Yulong Zhang , Jiayi Zhu , Jinhua Mai , Gang Liu , Manoj Krishna Sugumar , Xinhua Liu , Feng Zhan , Rui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423
Tianli Hui , Tao Zheng , Xiaoluo Cheng , Tonghui Li , Rui Zhang , Xianghai Meng , Haiyan Liu , Zhichang Liu , Chunming Xu . A review of plasma treatment on nano-microstructure of electrochemical water splitting catalysts. Chinese Journal of Structural Chemistry, 2025, 44(3): 100520-100520. doi: 10.1016/j.cjsc.2025.100520
Chengcheng Xie , Chengyi Xiao , Hongshuo Niu , Guitao Feng , Weiwei Li . Mesoporous organic solar cells. Chinese Chemical Letters, 2024, 35(11): 109849-. doi: 10.1016/j.cclet.2024.109849
Yan Cheng , Hai-Quan Yao , Ya-Di Zhang , Chao Shi , Heng-Yun Ye , Na Wang . Nitrate-bridged hybrid organic-inorganic perovskites. Chinese Journal of Structural Chemistry, 2024, 43(9): 100358-100358. doi: 10.1016/j.cjsc.2024.100358
Xiao-Hong Yi , Chong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094
Qijun Tang , Wenguang Tu , Yong Zhou , Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170
Junchuan Sun , Lu Wang . Carbon exchange enabled supra-photothermal methane dry reforming. Chinese Journal of Structural Chemistry, 2024, 43(10): 100330-100330. doi: 10.1016/j.cjsc.2024.100330
Shu-Ran Xu , Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173