Carbonyl polymeric electrode materials for metal-ion batteries
- Corresponding author: Wang Erjing, wangej@hubu.edu.cn Wang Chengliang, angewan@iccas.ac.cn; clwang@hust.edu.cn 1 M.Tang and H.Li contributed equally to this work
Citation:
Tang Mi, Li Hongyang, Wang Erjing, Wang Chengliang. Carbonyl polymeric electrode materials for metal-ion batteries[J]. Chinese Chemical Letters,
;2018, 29(2): 232-244.
doi:
10.1016/j.cclet.2017.09.005
T.B.Schon, B.T.McAllister, P.F.Li, D.S.Seferos, Chem.Soc.Rev.45(2016) 6345-6404.
doi: 10.1039/C6CS00173D
D.O.Akinyele, R.K.Rayudu, Sustain.Energy Technol.Assess.8(2014) 74-91.
M.Armand, J.M.Tarascon, Nature 451(2008) 652-657.
doi: 10.1038/451652a
B.Dunn, H.Kamath, J.M.Tarascon, Science 334(2011) 928-935.
doi: 10.1126/science.1212741
Z.Song, H.Zhou, Energy Environ.Sci.6(2013) 2280.
doi: 10.1039/c3ee40709h
S.H.Woo, Y.Park, W.Y.Choi, et al., J.Electrochem.Soc.159(2012) A2016-A2023.
doi: 10.1149/2.009301jes
Y.Wang, X.Yu, S.Xu, X.Huang, et al., Nat.Commun.4(2013) 2365.
Y.Sun, L.Zhao, H.Pan, et al., Nat.Commun.4(2013) 1870.
doi: 10.1038/ncomms2878
Q.Sun, Q.Q.Ren, H.Li, Z.W.Fu, Electrochem.Commun.13(2011) 1462-1464.
doi: 10.1016/j.elecom.2011.09.020
P.Senguttuvan, G.Rousse, V.Seznec, J.M.Tarascon, M.R.Palacin, Chem.Mater.23(2011) 4109-4111.
doi: 10.1021/cm202076g
Z.Gong, Y.Yang, Energ Environ.Sci.4(2011) 3223-3242.
doi: 10.1039/c0ee00713g
C.Masquelier, L.Croguennec, Chem.Rev.113(2013) 6552-6591.
doi: 10.1021/cr3001862
Y.Xu, Y.Zhu, Y.Liu, C.Wang, Adv.Energy Mater.3(2013) 128-133.
doi: 10.1002/aenm.201200346
A.Darwiche, C.Marino, M.T.Sougrati, et al., J.Am.Chem.Soc.134(2012) 20805-20811.
doi: 10.1021/ja310347x
H.Zhu, Z.Jia, Y.Chen, et al., Nano Lett.13(2013) 3093-3100.
doi: 10.1021/nl400998t
Y.Shao, J.Xiao, W.Wang, et al., Nano Lett.13(2013) 3909-3914.
doi: 10.1021/nl401995a
S.Komaba, W.Murata, T.Ishikawa, et al., Adv.Funct.Mater.21(2011) 3859-3867.
doi: 10.1002/adfm.v21.20
Y.Cao, L.Xiao, M.L.Sushko, et al., Nano Lett.12(2012) 3783-3787.
doi: 10.1021/nl3016957
Y.Kim, Y.Park, A.Choi, et al., Adv.Mater.25(2013) 3045-3049.
doi: 10.1002/adma.v25.22
J.Qian, X.Wu, Y.Cao, X.Ai, H.Yang, Angew.Chem.125(2013) 4731-4734.
doi: 10.1002/ange.201209689
Q.L.Jiang, K.Du, Y.B.Cao, et al., Chin.Chem.Lett.21(2010) 1382-1386.
doi: 10.1016/j.cclet.2010.04.039
P.Novák, K.Müller, K.Santhanam, O.Haas, Chem.Rev.97(1997) 207-282.
doi: 10.1021/cr941181o
P.J.Nigrey, D.MacInnes, D.P.Nairns, A.G.MacDiarmid, A.J.Heeger, J.Electrochem.Soc.128(1981) 1651-1654.
doi: 10.1149/1.2127704
D.MacInnes, M.A.Druy, P.J.Nigrey, D.P.Nairns, A.G.MacDiarmid, A.J.Heeger, J.Chem.Soc.Chem.Commun.(1981) 317-319.
B.Häupler, A.Wild, U.S.Schubert, Adv.Energy Mater.5(2015) 1402034.
doi: 10.1002/aenm.201402034
Y.Wu, R.Zeng, J.Nan, et al., Adv.Energy Mater.(2017) 1700278.
H.Nishide, K.Oyaizu, Science 319(2008) 737-738.
doi: 10.1126/science.1151831
C.Wang, Y.Fang, Y.Xu, et al., Adv.Funct.Mater.26(2016) 1777-1786.
doi: 10.1002/adfm.v26.11
C.Wang, C.Jiang, Y.Xu, et al., Adv.Mater.28(2016) 9182-9187.
doi: 10.1002/adma.201603240
C.Luo, J.Wang, X.Fan, et al., Nano Energy 13(2015) 537-545.
doi: 10.1016/j.nanoen.2015.03.041
D.Monti, E.Jónsson, M.R.Palacín, P.Johansson, J.Power Sources 245(2014) 630-636.
doi: 10.1016/j.jpowsour.2013.06.153
Z.Zhu, M.Hong, D.Guo, et al., J.Am.Chem.Soc.136(2014) 16461-16464.
doi: 10.1021/ja507852t
H.Shirakawa, E.J.Louis, A.G.MacDiarmid, C.K.Chiang, A.J.Heeger, J.Chem.Soc.Chem.Commun.(1977) 578-580.
C.Chiang, Polymer 22(1981) 1454-1456.
doi: 10.1016/0032-3861(81)90309-8
G.C.Farrington, R.Huq, J.Power Sources 14(1985) 3-9.
doi: 10.1016/0378-7753(85)88002-2
T.Nagatomo, C.Ichikawa, O.Omoto, J.Electrochem.Soc.134(1987) 305-308.
doi: 10.1149/1.2100451
L.Zhu, A.Lei, Y.Cao, X.Ai, H.Yang, Chem.Commun.49(2013) 567-569.
doi: 10.1039/C2CC36622C
M.Dubois, A.Naji, D.Billaud, Electrochim.Acta 46(2001) 4301-4307.
doi: 10.1016/S0013-4686(01)00663-6
N.Ravet, C.Michot, M.Armand, Mater.Res.Soc.Symp.Proc.496(1997) 263.
doi: 10.1557/PROC-496-263
X.Guo, M.D.Watson, Macromolecules 44(2011) 6711-6716.
doi: 10.1021/ma2009063
K.Cua See, H.E.Zatz, Transparent Electronics, John Wiley & Sons Ltd., 2010, pp.403-415.
Z.Wang, C.Kim, A.Facchetti, T.J.Marks, J.Am.Chem.Soc.129(2007) 13362-13363.
doi: 10.1021/ja073306f
C.Huang, S.Barlow, S.R.Marder, J.Org.Chem.76(2011) 2386-2407.
doi: 10.1021/jo2001963
D.W.Leedy, D.L.Muck, J.Am.Chem.Soc.93(1971) 4264-4270.
doi: 10.1021/ja00746a029
K.Oyaizu, A.Hatemata, W.Choi, H.Nishide, J.Mater.Chem.20(2010) 5404-5410.
doi: 10.1039/c0jm00042f
Z.Song, H.Zhan, Y.Zhou, Angew.Chem.122(2010) 8622-8626.
doi: 10.1002/ange.201002439
P.Sharma, D.Damien, K.Nagarajan, M.M.Shaijumon, M.Hariharan, J.Phys.Chem.Lett.4(2013) 3192-3197.
doi: 10.1021/jz4017359
D.Tian, H.Z.Zhang, D.S.Zhang, et al., RSC Adv.4(2014) 7506-7510.
doi: 10.1039/c3ra45563g
H.Wu, Q.Yang, Q.Meng, et al., J.Mater.Chem.A 4(2016) 2115-2121.
doi: 10.1039/C5TA07246H
C.Wang, H.Dong, W.Hu, Y.Liu, D.Zhu, Chem.Rev.112(2011) 2208-2267.
Z.Song, T.Xu, M.L.Gordin, et al., Nano Lett.12(2012) 2205-2211.
doi: 10.1021/nl2039666
H.Wu, K.Wang, Y.Meng, K.Lu, Z.Wei, J.Mater.Chem.A 1(2013) 6366-6372.
doi: 10.1039/c3ta10473g
H.Wu, Q.Meng, Q.Yang, et al., Adv.Mater.27(2015) 6504-6510.
doi: 10.1002/adma.201502241
H.Wu, S.A.Shevlin, Q.Meng, et al., Adv.Mater.26(2014) 3338-3343.
doi: 10.1002/adma.v26.20
Y.Meng, H.Wu, Y.Zhang, Z.Wei, J.Mater.Chem.A 2(2014) 10842-10846.
doi: 10.1039/C4TA00364K
C.Guo, K.Zhang, Q.Zhao, L.Pei, J.Chen, Chem.Commun.51(2015) 10244-10247.
doi: 10.1039/C5CC02251G
Z.Zhu, J.Chen, J.Electrochem.Soc.162(2015) A2393-A2405.
doi: 10.1149/2.0031514jes
P.Bu, S.Liu, Y.Lu, et al., Int.J.Electrochem.Sci 7(2012) 4617-4624.
S.Muench, A.Wild, C.Friebe, et al., Chem.Rev.116(2016) 9438-9484.
doi: 10.1021/acs.chemrev.6b00070
Z.Song, Y.Qian, M.Otani, H.Zhou, Adv.Energy Mater.6(2016) 1501780.
doi: 10.1002/aenm.201501780
D.Williams, J.Byrne, J.Driscoll, J.Electrochem.Soc.116(1969) 2-4.
doi: 10.1149/1.2411755
J.Foos, S.Erker, L.Rembetsy, J.Electrochem.Soc.133(1986) 836-841.
doi: 10.1149/1.2108689
W.Xu, A.Read, P.K.Koech, et al., J.Mater.Chem.22(2012) 4032-4039.
doi: 10.1039/c2jm15764k
D.Häringer, P.Novák, O.Haas, B.Piro, M.C.Pham, J.Electrochem.Soc.146(1999) 2393-2396.
doi: 10.1149/1.1391947
L.Zhao, W.Wang, A.Wang, et al., J.Power Sources 233(2013) 23-27.
doi: 10.1016/j.jpowsour.2013.01.103
Z.Song, Y.Qian, M.L.Gordin, et al., Angew.Chem.Int.Ed.54(2015) 13947-13951.
doi: 10.1002/anie.201506673
Z.Song, Y.Qian, X.Liu, et al., Energy Environ.Sci.7(2014) 4077-4086.
doi: 10.1039/C4EE02575J
Z.Song, Y.Qian, T.Zhang, M.Otani, H.Zhou, Adv.Sci.2(2015) 1500124.
doi: 10.1002/advs.201500124
B.Häupler, T.Hagemann, C.Friebe, A.Wild, U.S.Schubert, ACS Appl.Mater.Inter.7(2015) 3473-3479.
doi: 10.1021/am5060959
J.Xie, Z.Wang, P.Gu, et al., Sci.China Mater.59(2016) 6-11.
doi: 10.1007/s40843-016-0112-3
T.Nokami, T.Matsuo, Y.Inatomi, et al., J.Am.Chem.Soc.134(2012) 19694-19700.
doi: 10.1021/ja306663g
P.Krishnan, S.G.Advani, A.K.Prasad, J.Power Sources 196(2011) 7755-7759.
doi: 10.1016/j.jpowsour.2011.04.048
H.Qin, Z.Song, H.Zhan, Y.Zhou, J.Power Sources 249(2014) 367-372.
doi: 10.1016/j.jpowsour.2013.10.091
Z.Guo, L.Chen, Y.Wang, C.Wang, Y.Xia, ACS Sustain.Chem.Eng.5(2017) 1503-1508.
doi: 10.1021/acssuschemeng.6b02127
K.Oyaizu, W.Choi, H.Nishide, Polym.Adv.Technol.22(2011) 1242-1247.
doi: 10.1002/pat.v22.8
Y. Liang, Y. Jing, S. Gheytani, et al., Nat. Mater. (2017)http://dx.doi.org/10.1038/nmat4919.
J.Wu, X.Rui, C.Wang, et al., Adv.Energy Mater.5(2015) 1402189.
doi: 10.1002/aenm.201402189
Q.Liao, H.Hou, J.Duan, et al., J.Appl.Polym.Sci.134(2017) 44935.
J.B.Goodenough, Y.Kim, Chem.Mater.22(2010) 587-603.
doi: 10.1021/cm901452z
N.Yabuuchi, K.Kubota, M.Dahbi, S.Komaba, Chem.Rev.114(2014) 11636-11682.
doi: 10.1021/cr500192f
V.Palomares, P.Serras, I.Villaluenga, et al., Energ Environ.Sci.5(2012) 5884-5901.
doi: 10.1039/c2ee02781j
Y.Liang, Z.Tao, J.Chen, Adv.Energy Mater.2(2012) 742-769.
doi: 10.1002/aenm.201100795
L.Chen, W.Li, Y.Wang, C.Wang, Y.Xia, RSC Adv.4(2014) 25369-25373.
doi: 10.1039/C4RA03473B
H.Wang, S.Yuan, D.Ma, et al., Adv.Energy Mater.4(2014) 1301651.
doi: 10.1002/aenm.201301651
F.Xu, J.Xia, W.Shi, Electrochem.Commun.60(2015) 117-120.
doi: 10.1016/j.elecom.2015.08.027
F.Xu, H.Wang, J.Lin, et al., J.Mater Chem.A 4(2016) 11491-11497.
doi: 10.1039/C6TA03956A
F.Xu, J.Xia, W.Shi, S.A.Cao, Mater.Chem.Phys.169(2016) 192-197.
doi: 10.1016/j.matchemphys.2015.12.004
H.Banda, D.Damien, K.Nagarajan, M.Hariharan, M.M.Shaijumon, J.Mater.Chem.A 3(2015) 10453-10458.
doi: 10.1039/C5TA02043C
W.Deng, X.Liang, X.Wu, et al., Sci.Rep.3(2013) 2671.
doi: 10.1038/srep02671
T.Sun, Z.Li, H.G.Wang, et al., Angew.Chem.128(2016) 10820-10824.
doi: 10.1002/ange.201604519
T.Liu, K.C.Kim, B.Lee, et al., Energ Environ.Sci.10(2017) 205-215.
doi: 10.1039/C6EE02641A
C.Wang, Y.Xu, Y.Fang, et al., J.Am.Chem.Soc.137(2015) 3124-3130.
doi: 10.1021/jacs.5b00336
E.Castillo-Martínez, J.Carretero-González, M.Armand, Angew.Chem.Int.Ed.53(2014) 5341-5345.
doi: 10.1002/anie.v53.21
B.Pan, D.Zhou, J.Huang, et al., J.Electrochem.Soc.163(2016) A580-A583.
doi: 10.1149/2.0021605jes
Y.NuLi, Z.Guo, H.Liu, J.Yang, Electrochem.Commun.9(2007) 1913-1917.
doi: 10.1016/j.elecom.2007.05.009
J.Bitenc, K.Pirnat, T.Banci 9 c, et al., ChemSusChem 8(2015) 41289-4132.
B.Pan, J.Huang, Z.Feng, et al., Adv.Energy Mater.6(2016) 1600140.
doi: 10.1002/aenm.201600140
Y.Zhang, J.Wang, S.N.Riduan, J.Mater.Chem.A 4(2016) 14902-14914.
doi: 10.1039/C6TA05231B
Xinyu Ren , Hong Liu , Jingang Wang , Jiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282
Tao Long , Peng Chen , Bin Feng , Caili Yang , Kairong Wang , Yulei Wang , Can Chen , Yaping Wang , Ruotong Li , Meng Wu , Minhuan Lan , Wei Kong Pang , Jian-Fang Wu , Yuan-Li Ding . Reinforced concrete-like Na3.5V1.5Mn0.5(PO4)3@graphene hybrids with hierarchical porosity as durable and high-rate sodium-ion battery cathode. Chinese Chemical Letters, 2024, 35(4): 109267-. doi: 10.1016/j.cclet.2023.109267
Ningning Zhao , Yuyan Liang , Wenjie Huo , Xinyan Zhu , Zhangxing He , Zekun Zhang , Youtuo Zhang , Xianwen Wu , Lei Dai , Jing Zhu , Ling Wang , Qiaobao Zhang . Separator functionalization enables high-performance zinc anode via ion-migration regulation and interfacial engineering. Chinese Chemical Letters, 2024, 35(9): 109332-. doi: 10.1016/j.cclet.2023.109332
Jian Wang , Baohui Wang , Pin Ma , Yifei Zhang , Honghong Gong , Biyun Peng , Sen Liang , Yunchuan Xie , Hailong Wang . Regulation of uniformity and electric field distribution achieved highly energy storage performance in PVDF-based nanocomposites via continuous gradient structure. Chinese Chemical Letters, 2025, 36(4): 109714-. doi: 10.1016/j.cclet.2024.109714
Shuangliang Xie , Yuyue Chen , Qing He , Liang Chen , Jikun Yang , Shiqing Deng , Yimei Zhu , He Qi . Relaxor antiferroelectric-relaxor ferroelectric crossover in NaNbO3-based lead-free ceramics for high-efficiency large-capacitive energy storage. Chinese Chemical Letters, 2024, 35(7): 108871-. doi: 10.1016/j.cclet.2023.108871
Xiping Dong , Xuan Wang , Zhixiu Lu , Qinhao Shi , Zhengyi Yang , Xuan Yu , Wuliang Feng , Xingli Zou , Yang Liu , Yufeng Zhao . Construction of Cu-Zn Co-doped layered materials for sodium-ion batteries with high cycle stability. Chinese Chemical Letters, 2024, 35(5): 108605-. doi: 10.1016/j.cclet.2023.108605
Fan Wu , Shaoyang Wu , Xin Ye , Yurong Ren , Peng Wei . Research progress of high-entropy cathode materials for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(4): 109851-. doi: 10.1016/j.cclet.2024.109851
Xin Li , Ling Zhang , Yunyan Fan , Shaojing Lin , Yong Lin , Yongsheng Ying , Meijiao Hu , Haiying Gao , Xianri Xu , Zhongbiao Xia , Xinchuan Lin , Junjie Lu , Xiang Han . Carbon interconnected microsized Si film toward high energy room temperature solid-state lithium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109776-. doi: 10.1016/j.cclet.2024.109776
Mianying Huang , Zhiguang Xu , Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2024.100309
Guihuang Fang , Ying Liu , Yangyang Feng , Ying Pan , Hongwei Yang , Yongchuan Liu , Maoxiang Wu . Tuning the ion-dipole interactions between fluoro and carbonyl (EC) by electrolyte design for stable lithium metal batteries. Chinese Chemical Letters, 2025, 36(1): 110385-. doi: 10.1016/j.cclet.2024.110385
Shengyu Zhao , Qinhao Shi , Wuliang Feng , Yang Liu , Xinxin Yang , Xingli Zou , Xionggang Lu , Yufeng Zhao . Suppression of multistep phase transitions of O3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(5): 108606-. doi: 10.1016/j.cclet.2023.108606
Shengyu Zhao , Xuan Yu , Yufeng Zhao . A water-stable high-voltage P3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109933-. doi: 10.1016/j.cclet.2024.109933
Xin-Tong Zhao , Jin-Zhi Guo , Wen-Liang Li , Jing-Ping Zhang , Xing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715
Yang LIU , Lijun WANG , Hongyu WANG , Zhidong CHEN , Lin SUN . Surface and interface modification of porous silicon anodes in lithium-ion batteries by the introduction of heterogeneous atoms and hybrid encapsulation. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 773-785. doi: 10.11862/CJIC.20250015
Ying Li , Yanjun Xu , Xingqi Han , Di Han , Xuesong Wu , Xinlong Wang , Zhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189
Fanjun Kong , Yixin Ge , Shi Tao , Zhengqiu Yuan , Chen Lu , Zhida Han , Lianghao Yu , Bin Qian . Engineering and understanding SnS0.5Se0.5@N/S/Se triple-doped carbon nanofibers for enhanced sodium-ion batteries. Chinese Chemical Letters, 2024, 35(4): 108552-. doi: 10.1016/j.cclet.2023.108552
Huixin Chen , Chen Zhao , Hongjun Yue , Guiming Zhong , Xiang Han , Liang Yin , Ding Chen . Unraveling the reaction mechanism of high reversible capacity CuP2/C anode with native oxidation POx component for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109650-. doi: 10.1016/j.cclet.2024.109650
Ruofan Yin , Zhaoxin Guo , Rui Liu , Xian-Sen Tao . Ultrafast synthesis of Na3V2(PO4)3 cathode for high performance sodium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109643-. doi: 10.1016/j.cclet.2024.109643
Zhanheng Yan , Weiqing Su , Weiwei Xu , Qianhui Mao , Lisha Xue , Huanxin Li , Wuhua Liu , Xiu Li , Qiuhui Zhang . Carbon-based quantum dots/nanodots materials for potassium ion storage. Chinese Chemical Letters, 2025, 36(4): 110217-. doi: 10.1016/j.cclet.2024.110217
Yue Qian , Zhoujia Liu , Haixin Song , Ruize Yin , Hanni Yang , Siyang Li , Weiwei Xiong , Saisai Yuan , Junhao Zhang , Huan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785