Citation: Wu Wei, Song Sen, Cui Xiaowei, Sun Tao, Zhang Jian-Xin, Ni Xin-Long. pH-Switched fluorescent pseudorotaxane assembly of cucurbit[7]uril with bispyridinium ethylene derivatives[J]. Chinese Chemical Letters, ;2018, 29(1): 95-98. doi: 10.1016/j.cclet.2017.08.049 shu

pH-Switched fluorescent pseudorotaxane assembly of cucurbit[7]uril with bispyridinium ethylene derivatives

  • Corresponding author: Ni Xin-Long, longni333@163.com
  • Received Date: 27 May 2017
    Revised Date: 27 July 2017
    Accepted Date: 24 August 2017
    Available Online: 30 January 2017

Figures(6)

  • The host-guest properties of cucurbit[7]uril (Q[7]) and bispyridinium ethylene derivatives have been studied by 1H NMR spectroscopy, UV-vis absorption spectra, and fluorescence emission analysis. The proton shifts associated with the guest encapsulated by the host suggested that the Q[7]-based[2] pseudorotaxane behaves like a fast molecular shuttle along the bispyridinium ethylene axle of the guest upon protonation and deprotonation of the terminal carboxylates. In particular, the distinct fluorescent response signals indicated that the bispyridinium ethylene moiety not only behaves as the axle component for the pseudorotaxane system, but also acts as an optical reporting unit during the host-guest complexation.
  • 加载中
    1. [1]

      (a) V. Balzani, A. Credi, F. M. Raymo, J. F. Stoddart, Angew. Chem. Int. Ed. 112(2000) 3484-3530;
      (b) M. Gómez-López, J. A. Preece, J. F. Stoddart, Nanotechnology 7(1996) 183-192.

    2. [2]

      (a) R. S. Forgan, J. P. Sauvage, J. F. Stoddart, Chem. Rev. 111(2011) 5434-5464;
      (b) D. H. Qu, H. Tian, Chem. Sci. 2(2011) 1011-1015;
      (c) J. E. Beves, B. A. Blight, C. J. Campbell, D. A. Leigh, R. T. McBurney, Angew. Chem. Int. Ed. 50(2011) 9260-9327;
      (d) S. H. Li, Y. M. Zhang, Y. Liu, Chin. Sci. Bull. 61(2016) 3917-3923;
      (e) M. Xue, Y. Yang, X. D. Chi, X. Z. Yan, F. H. Huang, Chem. Rev. 115(2015) 7398-7501;
      (f) X. Wu, L. Gao, J. Z. Sun, X. Y. Hu, L. Y. Wang, Chin. Chem. Lett. 27(2016) 1655-1660;
      (g) H. Wang, Z. J. Zhang, H. Y. Zhang, Y. Liu, Chin. Chem. Lett. 24(2013) 563-567;
      (h) L. L. Hu, W. Xue, J. Yin, Chin. Chem. Lett. 27(2016) 155-158.

    3. [3]

      (a) B. Valeur, Molecular Fluorescence: principles and Applications, Wiley-VCH, Weinheim, Germany, 2002;
      (b) V. Balzani, A. Credi, M. Venturi, Molecular Devices and Machines-concepts and Perspectives for the Nanoworld, Wiley-VCH, Weinheim Germany, 2008.

    4. [4]

      (a) H. Wang, X. F. Ji, Z. T. Li, F. H. Huang, Adv. Mater. 29(2017) 1606117;
      (b) H. Zhang, J. Hu, D. H. Qu, Org. Lett. 14(2012) 2334-2337;
      (c) X. F. Ji, Y. Yao, J. Y. Li, X. Z. Yan, F. H. Huang, J. Am. Chem. Soc. 135(2013) 74-77;
      (d) T. T. Cao, X. Y. Yao, J. Zhang, Q. C. Wang, X. Ma, Chin. Chem. Lett. 26(2015) 867-871.

    5. [5]

      (a) J. Kim, I. S. Jung, S. Y. Kim, et al., J. Am Chem. Soc. 122(2000) 540-541;
      (b) A. I. Day, A. P. Arnold, R. J. Blanch, B. Snushall, J. Org. Chem. 66(2001) 8094-8100.

    6. [6]

      (a) S. J. Barrow, S. Kasera, M. J. Rowland, J. D. Barrio, O. A. Scherman, Chem. Rev. 115(2015) 12320-12406;
      (b) X. L. Ni, X. Xiao, H. Cong, et al., Acc. Chem. Res. 47(2014) 1386-1395.

    7. [7]

      (a) W. Zhang, Y. M. Zhang, S. H. Li, et al., Angew. Chem. Int. Ed. 55(2016) 11452-11456;
      (b) M. H. Tootoonchi, G. Sharma, J. Calles, R. Prabhakar, A. E. Kaifer, Chem. Int. Ed. 55(2016) 11507-11511;
      (c) J. Tian, Z. Y. Xu, D. W. Zhang, et al., Nature Commun. 7(2016) 11580;
      (d) Q. Zhang, D. H. Qu, Q. C. Wang, H. Tian, Angew. Chem. Int. Ed. 127(2015) 16015-16019;
      (e) L. C. Smith, D. G. Leach, B. E. Blaylock, O. A. Ali, A. R. Urbach, J. Am. Chem. Soc. 137(2015) 3663-3669;
      (f) H. Li, Y. W. Yang, Chin. Chem. Lett. 24(2013) 545-552.

    8. [8]

      G. Ghale, W.M. Nau, Acc. Chem. Res. 47(2014) 2150-2159.  doi: 10.1021/ar500116d

    9. [9]

      (a) X. L. Ni, S. Y. Chen, Z. Y. P. Yang, J. Am. Tao, Chem. Soc. 138(2016) 6177-6183;
      (b) S. K. Samanta, K. G. Brady, L. Isaacs, Chem. Commun. 53(2017) 2756-2759;
      (c) S. Q. Xu, X. Zhang, C. B. Nie, et al., Chem. Commun. 51(2015) 16417-16420;
      (d) L. H. Wang, Z. J. Zhang, H. Y. Zhang, H. L. Wu, Y. Liu, Chin. Chem. Lett. 24(2013) 949-952;
      (e) A. Singh, W. T. Yip, R. L. Halterman, Org. Lett. 14(2012) 4046-4049;
      (f) O. Buyukcakir, F. T. Yasar, O. A. Bozdemir, B. Icli, E. U. Akkaya, Org. Lett. 15(2013) 1012-1015.

    10. [10]

      K. Kim, Chem. Soc. Rev. 31(2002) 96-107.  doi: 10.1039/a900939f

    11. [11]

      V. Kolman, M.S. Khan, M. Babinský, R. Marek, V. Sindelar, Org. Lett. 13(2011) 6148-6151.  doi: 10.1021/ol2023888

    12. [12]

      H. Yang, Y.L. Liu, K. Liu, et al., Langmuir 29(2013) 12909-12914.  doi: 10.1021/la4025102

    13. [13]

      V. Sindelar, S. Silvi, A.E. Kaifer, Chem. Commun. 20(2006) 2185-2187.

    14. [14]

      (a) J. Mei, N. L. C. Leung, R. T. K. Kwok, J. W. Y. Lam, B. Z. Tang, Rev. 115(2015) 11718-11940;
      (b) J. S. Yang, C. K. Lin, A. M. Lahoti, et al., J. Phys Chem. A 113(2009) 4868-4877.

  • 加载中
    1. [1]

      Hao ZhangHaonan QuEhsan Bahojb NoruziHaibing LiFeng Liang . A nanocomposite film with layer-by-layer self-assembled gold nanospheres driven by cucurbit[7]uril for the selective transport of L-tryptophan and lysozyme. Chinese Chemical Letters, 2025, 36(1): 109731-. doi: 10.1016/j.cclet.2024.109731

    2. [2]

      Lijun MaoShuo LiXin ZhangZhan-Ting LiDa Ma . Cucurbit[n]uril-based nanostructure construction and modification. Chinese Chemical Letters, 2024, 35(8): 109363-. doi: 10.1016/j.cclet.2023.109363

    3. [3]

      Jie YangXin-Yue LouDihua DaiJingwei ShiYing-Wei Yang . Desymmetrized pillar[8]arenes: High-yield synthesis, functionalization, and host-guest chemistry. Chinese Chemical Letters, 2025, 36(1): 109818-. doi: 10.1016/j.cclet.2024.109818

    4. [4]

      Shuo LiQianfa LiuLijun MaoXin ZhangChunju LiDa Ma . Benzothiadiazole-based water-soluble macrocycle: Synthesis, aggregation-induced emission and selective detection of spermine. Chinese Chemical Letters, 2024, 35(11): 109791-. doi: 10.1016/j.cclet.2024.109791

    5. [5]

      Xiangjun ZhangXiaodi YangYan WangZhongping XuSisi YiTao GuoYue LiaoXiyu TangJianxiang ZhangRuibing Wang . A supramolecular nanoprodrug for prevention of gallstone formation. Chinese Chemical Letters, 2025, 36(2): 109854-. doi: 10.1016/j.cclet.2024.109854

    6. [6]

      Yu-Hui ZhangYe TianXianliang ShengChen-Shuang LiuLu-Qiang WeiJie WangYong Chen . Construction of a black phosphorous-based noncovalent multiple nanosupramolecular assembly for synergistic targeted photothermal and chemodynamic therapy. Chinese Chemical Letters, 2025, 36(4): 110193-. doi: 10.1016/j.cclet.2024.110193

    7. [7]

      Xianchen HuJunli YangFang GaoZhiyong ZhaoSimin Liu . Highly selective [4+4] cross-photodimerization of (4a-azonia)anthracenes driven by confinement of D-A hetero-guest pair in cucurbit[10]uril host. Chinese Chemical Letters, 2025, 36(3): 109967-. doi: 10.1016/j.cclet.2024.109967

    8. [8]

      Hui-Juan WangWen-Wen XingZhen-Hai YuYong-Xue LiHeng-Yi ZhangQilin YuHongjie ZhuYao-Yao WangYu Liu . Cucurbit[7]uril confined phenothiazine bridged bis(bromophenyl pyridine) activated NIR luminescence for lysosome imaging. Chinese Chemical Letters, 2024, 35(6): 109183-. doi: 10.1016/j.cclet.2023.109183

    9. [9]

      Jianmei Guo Yupeng Zhao Lei Ma Yongtao Wang . Ultra-long room temperature phosphorescence, intrinsic mechanisms and application based on host-guest doping systems. Chinese Journal of Structural Chemistry, 2024, 43(9): 100335-100335. doi: 10.1016/j.cjsc.2024.100335

    10. [10]

      Cheng HeRenlan HuangLingling WeiQiuhui HeJinbo LiuJiao ChenGe GaoCheng YangWanhua Wu . Uncovering the mask of sensitizers to switch on the TTA-UC emission by supramolecular host-guest complexation. Chinese Chemical Letters, 2025, 36(4): 110103-. doi: 10.1016/j.cclet.2024.110103

    11. [11]

      Shaojie DengPeihua MaQinghong BaiXin Xiao . The transformation of nor-seco-cucurbit[10]uril to cucurbit[5]uril and cucurbit[8]uril controlled by its own concentration. Chinese Chemical Letters, 2025, 36(2): 109878-. doi: 10.1016/j.cclet.2024.109878

    12. [12]

      Yu XiaYangming JiangXin-Long NiQiaochun WangDaoping Wang . A macrocycle-based "Russian doll": The smallest cucurbit[4]uril in cucurbit[10]uril. Chinese Chemical Letters, 2024, 35(12): 109782-. doi: 10.1016/j.cclet.2024.109782

    13. [13]

      Gaojian YangZhiyang LiRabia UsmanZhu ChenYuan LiuSong LiHui ChenYan DengYile FangNongyue He . DNA walker induced "signal on" fluorescence aptasensor strategy for rapid and sensitive detection of extracellular vesicles in gastric cancer. Chinese Chemical Letters, 2025, 36(2): 109930-. doi: 10.1016/j.cclet.2024.109930

    14. [14]

      Cheng WangJi WangDong LiuZhi-Ling Zhang . Advances in virus-host interaction research based on microfluidic platforms. Chinese Chemical Letters, 2024, 35(12): 110302-. doi: 10.1016/j.cclet.2024.110302

    15. [15]

      Qian RenXue DaiRan CenYang LuoMingyang LiZiyun ZhangQinghong BaiZhu TaoXin Xiao . A cucurbit[8]uril-based supramolecular phosphorescent assembly: Cell imaging and sensing of amino acids in aqueous solution. Chinese Chemical Letters, 2024, 35(12): 110022-. doi: 10.1016/j.cclet.2024.110022

    16. [16]

      Ran CenYan-Yan TangLi-Xia ChenZhu TaoXin Xiao . A novel supramolecular assembly based on nor-seco-cucurbit[10]uril for spermine sensing and artificial light-harvesting. Chinese Chemical Letters, 2025, 36(1): 109744-. doi: 10.1016/j.cclet.2024.109744

    17. [17]

      Jianqiu LiYi ZhangSongen LiuJie NiuRong ZhangYong ChenYu Liu . Cucurbit[8]uril-based non-covalent heterodimer realized NIR cell imaging through topological transformation from nanowire to nanorod. Chinese Chemical Letters, 2024, 35(10): 109645-. doi: 10.1016/j.cclet.2024.109645

    18. [18]

      Bingbing ShiYuchun WangYi ZhouXing-Xing ZhaoYizhou LiNuoqian YanWen-Juan QuQi LinTai-Bao Wei . A supramolecular oligo[2]rotaxane constructed by orthogonal platinum(Ⅱ) metallacycle and pillar[5]arene-based host–guest interactions. Chinese Chemical Letters, 2024, 35(10): 109540-. doi: 10.1016/j.cclet.2024.109540

    19. [19]

      Xueru ZhaoAopu WangShimin WangZhijie SongLi MaLi Shao . Adsorption and visual detection of nitro explosives by pillar[n]arenes-based host–guest interactions. Chinese Chemical Letters, 2025, 36(4): 110205-. doi: 10.1016/j.cclet.2024.110205

    20. [20]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

Metrics
  • PDF Downloads(3)
  • Abstract views(777)
  • HTML views(42)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return