Citation: Yang Ling, Zhao Wei, Che Yan-Ke, Wang Ying, Jiang Hua. Influence of terminal substituents on the halide anion binding of foldamer-based receptors[J]. Chinese Chemical Letters, ;2017, 28(8): 1659-1662. doi: 10.1016/j.cclet.2017.06.006 shu

Influence of terminal substituents on the halide anion binding of foldamer-based receptors

Figures(5)

  • Foldamers 1-4 incorporating different terminal substituents have been designed and synthesized for binding halide anions. 1H NMR titration experiments carried out in DMSO-d6/CDCl3 (15/85, v/v) demonstrated that the short oligo(aryltriazole)s backbone 1 could not bind halide anions unless that amide H-bond donors were incorporated at the termini of the oligomer. Terminal substituents on oligo(aryltriazoleamide)s foldamers 2-4 display a considerable influence on the binding affinities of the foldamers for halide anions. Large steric hindrance of the terminal substituents was found to be unfavorable for binding halide anions, but aromatic π-π interactions between two terminal substituents are capable of stabilizing the conformation of foldamers thus giving rise to an enhancement in the binding strengths. However, the terminal substituents were found to hardly affect the binding selectivity in the studied cases.
  • 加载中
    1. [1]

      Beer P.D., Gale P.A.. Anion recognition and sensing:the state of the art and future perspectives[J]. Angew. Chem. Int. Ed., 2001,40:486-516. doi: 10.1002/1521-3773(20010202)40:3<>1.0.CO;2-A

    2. [2]

      Sessler J.L., Camiolo S., Gale P.A.. Pyrrolic and polypyrrolic anion binding agents[J]. Coord. Chem. Rev., 2003,240:17-55. doi: 10.1016/S0010-8545(03)00023-7

    3. [3]

      Amendola V., Esteban-Gmez D., Fabbrizzi L., Licchelli M.. What anions do to NH-containing receptors[J]. Acc. Chem. Res., 2006,39:343-353. doi: 10.1021/ar050195l

    4. [4]

      Caltagirone C., Gale P.A.. Anion receptor chemistry:highlights from 2007[J]. Chem. Soc. Rev., 2009,38:520-563. doi: 10.1039/B806422A

    5. [5]

      Kubik S.. Amino acid containing anion receptors[J]. Chem. Soc. Rev., 2009,38:585-605. doi: 10.1039/B810531F

    6. [6]

      Wenzel M., Hiscock J.R., Gale P.A.. Anion receptor chemistry:highlights from 2010[J]. Chem. Soc. Rev., 2012,41:480-520. doi: 10.1039/C1CS15257B

    7. [7]

      Evans N.H., Beer P.D.. Advances in anion supramolecular chemistry:from recognition to chemical applications[J]. Angew. Chem. Int. Ed., 2014,53:11716-11754. doi: 10.1002/anie.201309937

    8. [8]

      Hill D.J., Mio M.J., Prince R.B., Hughes T.S., Moore J.S.. A field guide to foldamers[J]. Chem. Rev, 2001,101:3893-4011. doi: 10.1021/cr990120t

    9. [9]

      S. Hecht, I. Huc, Foldamers: Structures, Properties, and Applications, WileyVCH, Weinheim, 2007.

    10. [10]

      Juwarker H., Suk J.M., Jeong K.S.. Foldamers with helical cavities for binding complementary guests[J]. Chem. Soc. Rev., 2009,38:3316-3325. doi: 10.1039/b909034g

    11. [11]

      Juwarker H., Jeong K.S.. Anion-controlled foldamers[J]. Chem. Soc. Rev, 2010,39:3664-3674. doi: 10.1039/b926162c

    12. [12]

      Chang K.J., Moon D., Lah M.S., Jeong K.S.. Indole-based macrocycles as a class of receptors for anions[J]. Angew. Chem. Int. Ed., 2005,44:7926-7929. doi: 10.1002/(ISSN)1521-3773

    13. [13]

      Chang K.J., Kang B.N., Lee M.H., Jeong K.S.. Oligoindole-based foldamers with a helical conformation induced by chloride[J]. J. Am. Chem. Soc., 2005,127:12214-12215. doi: 10.1021/ja0547984

    14. [14]

      Juwarker H., Lenhardt J.M., Pham D.M., Craig S.L.. 1, 2, 3-Triazole CH…Cl contacts guide anion binding and concomitant folding in 1, 4-diaryl triazole oligomers[J]. Angew. Chem. Int. Ed., 2008,47:3740-3743. doi: 10.1002/(ISSN)1521-3773

    15. [15]

      Amendola V., Fabbrizzi L., Mosca L.. Anion recognition by hydrogen bonding:urea-based receptors[J]. Chem. Soc. Rev., 2010,39:3889-3915. doi: 10.1039/b822552b

    16. [16]

      Bondy C.R., Loeb S.J.. Amide based receptors for anions[J]. Coord. Chem. Rev., 2003,240:77-99. doi: 10.1016/S0010-8545(02)00304-1

    17. [17]

      Zhang D.W., Zhao X., Hou J.L., Li Z.T.. Aromatic amide foldamers:structures, properties, and functions[J]. Chem. Rev., 2012,112:5271-5316. doi: 10.1021/cr300116k

    18. [18]

      Chmielewski M.J., Charon M., Jurczak J.. 1, 8-Diamino-3, 6-dichlorocarbazole:a promising building block for anion receptors[J]. Org. Lett., 2004,6:3501-3504. doi: 10.1021/ol048661e

    19. [19]

      Bryantsev V.S., Hay B.P.. Are C-H groups significant hydrogen bonding sites in anion Receptors? Benzene complexes with Cl- NO3-, and ClO4-[J]. J. Am. Chem. Soc., 2005,127:8282-8283. doi: 10.1021/ja0518272

    20. [20]

      Bates G.W., Triyanti , Light M.E., Albrecht M., Gale P.A.. 2, 7-Functionalized indoles as receptors for anions[J]. J. Org. Chem., 2007,72:8921-8927. doi: 10.1021/jo701702p

    21. [21]

      Bates G.W., Gale P.A., Light M.E.. Isophthalamides and 2, 6-dicarboxamidopyridines with pendant indole groups:a 'twisted' binding mode for selective fluoride recognition[J]. Chem. Commun., 2007,21:2121-2123.  

    22. [22]

      Kim U.I., Suk J.M., Naidu V.R., Jeong K.S.. Folding and anion-binding properties of fluorescent oligoindole foldamers[J]. Chem. Eur. J., 2008,14:11406-11414. doi: 10.1002/chem.200801713

    23. [23]

      Zhang D.W., Zhao X., Li Z.T.. Aromatic amide and hydrazide foldamer-based responsive host-guest Systems[J]. Acc. Chem. Res., 2014,47:1961-1970. doi: 10.1021/ar5000242

    24. [24]

      Lee S., Hua Y., Park H., Flood A.H.. Intramolecular hydrogen bonds preorganize an aryl-triazole receptor into a crescent for chloride binding[J]. Org. Lett., 2010,12:2100-2102. doi: 10.1021/ol1005856

    25. [25]

      Lee S., Hua Y., Flood A.H.. b-Sheet-like hydrogen bonds interlock the helical turns of a photoswitchable foldamer to enhance the binding and release of chloride[J]. J. Org. Chem., 2014,79:8383-8396. doi: 10.1021/jo501595k

    26. [26]

      Haridas V., Sahu S., Praveen Kumar P.P.. Triazole-based chromogenic and nonchromogenic receptors for halides[J]. Tetrahedron Lett., 2011,52:6930-6934. doi: 10.1016/j.tetlet.2011.10.066

    27. [27]

      Haridas V., Sahu S., Venugopalan P.. Halide binding and self-assembling behavior of triazole-based acyclic and cyclic molecules[J]. Tetrahedron, 2011,67:727-733. doi: 10.1016/j.tet.2010.11.078

    28. [28]

      Wang Y., Li F., Han Y., Wang F.Y., Jiang H.. Folding and aggregation of cationic oligo(aryl-triazole)s in aqueous solution[J]. Chem. Eur. J., 2009,15:9424-9433. doi: 10.1002/chem.v15:37

    29. [29]

      Wang Y., Bie F.S., Jiang H.. Controlling binding affinities for anions by a photoswitchable foldamer[J]. Org. Lett., 2010,12:3630-3633. doi: 10.1021/ol1014043

    30. [30]

      Wang Y., Xiang J., Jiang H.. Halide-guided oligo(aryl-triazole-amide)s foldamers:receptors for multiple halide ions[J]. Chem. Eur. J., 2011,17:613-619. doi: 10.1002/chem.201001560

    31. [31]

      Shang J., Gallagher N.M., Bie F.S.. Aromatic triazole foldamers induced by C-H…X (X=F, Cl) intramolecular hydrogen bonding[J]. J. Org. Chem., 2014,79:5134-5144. doi: 10.1021/jo500582c

    32. [32]

      Shang J., Si W., Zhao W.. Preorganized aryltriazole foldamers as effective transmembrane transporters for chloride anion[J]. Org. Lett., 2014,16:4008-4011. doi: 10.1021/ol501772v

    33. [33]

      Zhao W., Wang Y., Shang J., Che Y.K., Jiang H.. Acid/base-mediated uptake and release of halide anions with a preorganized aryl-triazole foldamer[J]. Chem. Eur. J., 2015,21:7731-7735. doi: 10.1002/chem.v21.21

    34. [34]

      Zhao W., Huang F., Wang Y.. Aryl-triazole foldamers with ethynyl spacers as effective receptors for halides and oxyanions[J]. Tetrahedron Lett., 2016,15:1691-1694.  

    35. [35]

      Shang J., Zhao W., Li X.C., Wang Y., Jiang H.. Aryl-triazole foldamers incorporating a pyridinium motif for halide anion binding in aqueous media[J]. Chem. Commun., 2016,52:4505-4508. doi: 10.1039/C5CC10422J

    36. [36]

      Wang Y., Zhao W., Bie F.S.. Ruthenium(Ⅱ) complexes of aryl triazole foldamers as receptors for anions[J]. Chem. Eur. J., 2016,22:5233-5242. doi: 10.1002/chem.201504910

    37. [37]

      Juwarker H., Lenhardt J.M., Pham D.M., Craig S.L.. 1, 23-Triazole CH…Cl contacts guide anion binding and concomitant folding in 1, 4-diaryl triazole oligomers[J]. Angew. Chem. Int. Ed., 2008,47:3740-3743. doi: 10.1002/(ISSN)1521-3773

    38. [38]

      Saraogi I., Hamilton A.D.. Recent advances in the development of aryl-based foldamers[J]. Chem. Soc. Rev., 2009,38:1726-1743. doi: 10.1039/b819597h

    39. [39]

      Hua Y., Flood A.H.. Click chemistry generates privileged CH hydrogen-bonding triazoles:the latest addition to anion supramolecular chemistry[J]. Chem. Soc. Rev., 2010,39:1262-1271. doi: 10.1039/b818033b

    40. [40]

      Qiao B., Sengupta A., Liu Y.. Electrostatic and allosteric cooperativity in ion-pair binding:a quantitative and coupled experiment-theory study with aryl-triazole-ether Macrocycles[J]. J. Am. Chem. Soc., 2015,137:9746-9757. doi: 10.1021/jacs.5b05839

    41. [41]

      M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al. , Gaussian 03, Revision D. 02, Gaussian Inc. , Pittsburgh, PA, 2004.

    42. [42]

      Hynes M.J.. EQNMR:a computer program for the calculation of stability constants from nuclear magnetic resonance chemical shift data[J]. J. Chem. Soc. Dalton Trans, 1993:311-312.

    43. [43]

      Rostovtsev V.V., Green L.G., Fokin V.V., Sharpless K.B.. A stepwise Huisgen cycloaddition process:copper(Ⅰ)-catalyzed regioselective Ligation of azides and terminal alkynes[J]. Angew. Chem., 2002,114:2708-2711. doi: 10.1002/1521-3757(20020715)114:14<2708::AID-ANGE2708>3.0.CO;2-0

    44. [44]

      Torn C.W., Christensen C., Meldal M.. Peptidotriazoles on solid phase:[12, 3]-triazoles by regiospecific copper(Ⅰ)-catalyzed 1, 3-dipolar cycloadditions of terminal alkynes to azides[J]. J. Org. Chem., 2002,67:3057-3064. doi: 10.1021/jo011148j

    45. [45]

      Li Y., Flood A.H.. trong, size-selective, and electronically tunable C-H halide binding with steric control over aggregation from synthetically modular, shape-persistent [з4] triazolophanes[J]. J. Am. Chem. Soc., 2008,130:12111-12122. doi: 10.1021/ja803341y

  • 加载中
    1. [1]

      Xixian SunShengke LiRuibing WangLeyong Wang . Functional macrocyclic arenes with active binding sites inside cavity for biomimetic molecular recognition. Chinese Chemical Letters, 2025, 36(4): 110806-. doi: 10.1016/j.cclet.2024.110806

    2. [2]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    3. [3]

      Caihong MaoYanfeng HeXiaohan WangYan CaiXiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362

    4. [4]

      Cheng-Da ZhaoHuan YaoShi-Yao LiFangfang DuLi-Li WangLiu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879

    5. [5]

      Shiqi XuZi YeShuang ShangFengge WangHuan ZhangLianguo ChenHao LinChen ChenFang HuaChong-Jing Zhang . Pairs of thiol-substituted 1,2,4-triazole-based isomeric covalent inhibitors with tunable reactivity and selectivity. Chinese Chemical Letters, 2024, 35(7): 109034-. doi: 10.1016/j.cclet.2023.109034

    6. [6]

      Yue Mao Zhonghang Chen Tiankai Sun Wenyue Cui Peng Cheng Wei Shi . Luminescent coordination polymers with mixed carboxylate and triazole ligands for rapid detection of chloroprene metabolite. Chinese Journal of Structural Chemistry, 2024, 43(9): 100353-100353. doi: 10.1016/j.cjsc.2024.100353

    7. [7]

      Zhimin SunXin-Hui GuoYue ZhaoQing-Yu MengLi-Juan XingHe-Lue Sun . Dynamically switchable porphyrin-based molecular tweezer for on−off fullerene recognition. Chinese Chemical Letters, 2024, 35(6): 109162-. doi: 10.1016/j.cclet.2023.109162

    8. [8]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    9. [9]

      Mingqi WangShixin FaJiate YuGuoxian ZhangYi YanQing LiuQiuyu Zhang . Light-controlled protein imprinted nanospheres with variable recognition specificity. Chinese Chemical Letters, 2025, 36(2): 110124-. doi: 10.1016/j.cclet.2024.110124

    10. [10]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    11. [11]

      Jing LIANGQian WANGJunfeng BAI . Synthesis and structures of cdq-topological quaternary and (4, 4, 8)-c topological quinary Zn-MOFs with both oxalic acid and triazole ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2186-2192. doi: 10.11862/CJIC.20240177

    12. [12]

      Zhen DaiLinzhi TanYeyu SuKerui ZhaoYushun TianYu LiuTao Liu . Site-specific incorporation of reduction-controlled guest amino acids into proteins for cucurbituril recognition. Chinese Chemical Letters, 2024, 35(5): 109121-. doi: 10.1016/j.cclet.2023.109121

    13. [13]

      Yuanjiao LiuXiaoyang ZhaoSongyao ZhangYi WangYutuo ZhengXinrui MiaoWenli Deng . Site-selection and recognition of aromatic carboxylic acid in response to coronene and pyridine derivative. Chinese Chemical Letters, 2024, 35(8): 109404-. doi: 10.1016/j.cclet.2023.109404

    14. [14]

      Huan YaoJian QinYan-Fang WangSong-Meng WangLiu-Huan YiShi-Yao LiFangfang DuLiu-Pan YangLi-Li Wang . Ultra-highly selective recognition of nucleosides over nucleotides by rational modification of tetralactam macrocycle and its application in enzyme assay. Chinese Chemical Letters, 2024, 35(6): 109154-. doi: 10.1016/j.cclet.2023.109154

    15. [15]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    16. [16]

      Junying LIXinyan CHENXihui DIAOMuhammad YaseenChao CHENHao WANGChuansong QIWei LI . Chiral fluorescent sensor Tb3+@Cd-CP based on camphoric acid for the enantioselective recognition of R- and S-propylene glycol. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2497-2504. doi: 10.11862/CJIC.20240084

    17. [17]

      Yunjia Jiang Lingyao Wang Yuanbin Zhang . Anion pillared MOFs for challenging hydrocarbon separations. Chinese Journal of Structural Chemistry, 2024, 43(11): 100374-100374. doi: 10.1016/j.cjsc.2024.100374

    18. [18]

      Zhili LiQijun WoDongdong HuangDezhong ZhouLei GuoYeqing Mao . Improving gene transfection efficiency of highly branched poly(β-amino ester)s through the in-situ conversion of inactive terminal groups. Chinese Chemical Letters, 2024, 35(8): 109737-. doi: 10.1016/j.cclet.2024.109737

    19. [19]

      Jinge ZhuAiling TangLeyi TangPeiqing CongChao LiQing GuoZongtao WangXiaoru XuJiang WuErjun Zhou . Chlorination of benzyl group on the terminal unit of A2-A1-D-A1-A2 type nonfullerene acceptor for high-voltage organic solar cells. Chinese Chemical Letters, 2025, 36(1): 110233-. doi: 10.1016/j.cclet.2024.110233

    20. [20]

      Wu-Jian LongYang YuChuang He . A novel and promising engineering application of carbon dots: Enhancing the chloride binding performance of cement. Chinese Chemical Letters, 2024, 35(6): 108943-. doi: 10.1016/j.cclet.2023.108943

Metrics
  • PDF Downloads(0)
  • Abstract views(750)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return