Highly active iridium catalyst for hydrogen production from formic acid
- Corresponding author: Zhou Xiao-Chun, xczhou2013@sinano.ac.cn
Citation:
Du Ying, Shen Yang-Bin, Zhan Yu-Lu, Ning Fan-Di, Yan Liu-Ming, Zhou Xiao-Chun. Highly active iridium catalyst for hydrogen production from formic acid[J]. Chinese Chemical Letters,
;2017, 28(8): 1746-1750.
doi:
10.1016/j.cclet.2017.05.018
Zhu Q.L., Xu Q.. Liquid organic and inorganic chemical hydrides for highcapacity hydrogen storage[J]. Energy Environ. Sci., 2015,8:478-512. doi: 10.1039/C4EE03690E
Yadav M., Xu Q.. Liquid-phase chemical hydrogen storage materials[J]. Energy Environ. Sci., 2012,5:9698-9725. doi: 10.1039/c2ee22937d
Grasemann M., Laurenczy G.. Formic acid as a hydrogen source-recent developments and future trends[J]. Energy Environ. Sci., 2012,5:8171-8181. doi: 10.1039/c2ee21928j
Fellay C., Dyson P.J., Laurenczy G.. A viable hydrogen-storage system based on selective formic acid decomposition with a ruthenium catalyst[J]. Angew. Chem. Int. Ed., 2008,120:4030-4032. doi: 10.1002/(ISSN)1521-3757
Johnson T.C., Morris D.J., Wills M.. Hydrogen generation from formic acid and alcohols using homogeneous catalysts[J]. Chem. Soc. Rev., 2010,39:81-88. doi: 10.1039/B904495G
Gu X., Lu Z.H., Jiang H.L., Akita T., Xu Q.. Synergistic catalysis of metal-organic framework-immobilized Au-Pd nanoparticles in dehydrogenation of formic acid for chemical hydrogen storage[J]. J. Am. Chem. Soc., 2011,133:11822-11825. doi: 10.1021/ja200122f
Fukuzumi S., Kobayashi T., Suenobu T.. Efficient catalytic decomposition of formic acid for the selective generation of H2 and H/D exchange with a watersoluble rhodium complex in aqueous solution[J]. ChemSusChem, 2008,1:827-834. doi: 10.1002/cssc.v1:10
Himeda Y.. Highly efficient hydrogen evolution by decomposition of formic acid using an iridium catalyst with 4, 4'-dihydroxy-2, 2'-bipyridine[J]. Green Chem., 2009,11:2018-2022. doi: 10.1039/b914442k
Singh A.K., Jang S., Kim J.Y.. One-pot defunctionalization of lignin-derived compounds by dual-functional Pd50Ag50/Fe3O4/N-rGO Catalyst[J]. ACS Catal., 2015,5:6964-6972. doi: 10.1021/acscatal.5b01319
Sponholz P., Mellmann D., Junge H., Beller M.. Towards a practical setup for hydrogen production from formic acid[J]. ChemSusChem, 2013,6:1172-1176. doi: 10.1002/cssc.201300186
Tedsree K., Li T., Jones S.. Hydrogen production from formic acid decomposition at room temperature using a Ag-Pd core-shell nanocatalyst[J]. Nat. Nanotechnol., 2011,6:302-307. doi: 10.1038/nnano.2011.42
Wu S., Yang F., Wang H.. Mg2+-assisted low temperature reduction of alloyed AuPd/C:an efficient catalyst for hydrogen generation from formic acid at room temperature[J]. Chem. Commun., 2015,51:10887-10890. doi: 10.1039/C5CC02604K
Yan J.M., Wang Z.L., Gu L.. AuPd-MnOx/MOF-Graphene:An Efficient Catalyst for Hydrogen Production from Formic Acid at Room Temperature[J]. Adv.Energy Mater., 2015,51500107. doi: 10.1002/aenm.201500107
Zhang S., Metin O., Su D., Sun S.. Monodisperse AgPd alloy nanoparticles and their superior catalysis for the dehydrogenation of formic acid[J]. Angew. Chem. Int. Ed., 2013,52:3681-3684. doi: 10.1002/anie.201300276
Bavykina A.V., Goesten M.G., Kapteijn F., Makkee M., Gascon J.. Efficient production of hydrogen from formic acid using a covalent triazine framework supported molecular catalyst[J]. ChemSusChem, 2015,8:809-812. doi: 10.1002/cssc.v8.5
Wang Z., Lu S.M., Li J., Wang J., Li C.. Unprecedentedly high formic acid dehydrogenation activity on an iridium complex with an N, N'-diimine ligand in water[J]. Chem.-Eur. J., 2015,21:12592-12595. doi: 10.1002/chem.201502086
Hull J.F., Himeda Y., Wang W.H.. Reversible hydrogen storage using CO2 and a proton-switchable iridium catalyst in aqueous media under mild temperatures and pressures[J]. Nat. Chem., 2012,4:383-388. doi: 10.1038/nchem.1295
Boddien A., Gartner F., Jackstell R.. ortho-Metalation of iron(0) tribenzylphosphine complexes:homogeneous catalysts for the generation of hydrogen from formic acid[J]. Angew. Chem. Int. Ed., 2010,49:8993-8996. doi: 10.1002/anie.v49.47
Fukuzumi S., Kobayashi T., Suenobu T.. Unusually large tunneling effect on highly efficient generation of hydrogen and hydrogen isotopes in pH-selective decomposition of formic acid catalyzed by a heterodinuclear iridiumruthenium complex in water[J]. J. Am. Chem. Soc., 2010,132:1496-1497. doi: 10.1021/ja910349w
Jiang K., Xu K., Zou S., Cai W.B.. B-doped Pd catalyst:boosting roomtemperature hydrogen production from formic acid-formate solutions[J]. J. Am. Chem. Soc., 2014,136:4861-4864. doi: 10.1021/ja5008917
Chen Y., Zhu Q.L., Tsumori N., Xu Q.. Immobilizing highly catalytically active noble metal nanoparticles on reduced graphene oxide:a non-noble metal sacrificial approach[J]. J. Am. Chem. Soc., 2015,137:106-109. doi: 10.1021/ja511511q
Cai Y.Y., Li X.H., Zhang Y.N.. Highly efficient dehydrogenation of formic acid over a palladium-nanoparticle-based Mott-Schottky photocatalyst[J]. Angew. Chem. Int. Ed., 2013,52:11822-11825. doi: 10.1002/anie.v52.45
Bi Q.Y., Du X.L., Liu Y.M.. Efficient subnanometric gold-catalyzed hydrogen generation via formic acid decomposition under ambient conditions[J]. J. Am. Chem. Soc., 2012,134:8926-8933. doi: 10.1021/ja301696e
Wang Z.L., Yan J.M., Ping Y.. An efficient CoAuPd/C catalyst for hydrogen generation from formic acid at room temperature[J]. Angew. Chem. Int. Ed., 2013,52:4406-4409. doi: 10.1002/anie.201301009
Yang L., Hua X., Su J.. Highly efficient hydrogen generation from formic acid-sodium formate over monodisperse AgPd nanoparticles at room temperature[J]. App. Catal. B:Environ., 2015,168-169:423-428. doi: 10.1016/j.apcatb.2015.01.003
Yoo J.S., Zhao Z.J., Nørskov J.K., Studt F.. Effect of Boron Modifications of Palladium Catalysts for the Production of Hydrogen from Formic Acid[J]. ACS Catal., 2015,5:6579-6586. doi: 10.1021/acscatal.5b01497
Qin Y.L., Liu Y.C., Liang F., Wang L.M.. Preparation of Pd-Co-based nanocatalysts and their superior applications in formic acid decomposition and methanol oxidation[J]. ChemSusChem, 2015,8:260-263. doi: 10.1002/cssc.201402926
Li F.F., Gu J.N., Zhou X.C.. Single molecule electro-catalysis of non-fluorescent molecule[J]. Chin. Chem. Lett., 2015,26:1514-1517. doi: 10.1016/j.cclet.2015.09.013
Wang Y.X., Chen T.H.. A high dispersed Pt0.35Pd0.35Co0.30/C as superior catalyst for methanol and formic acid electro-oxidation[J]. Chin. Chem. Lett., 2014,25:907-911. doi: 10.1016/j.cclet.2014.04.031
Zhou X., Huang Y., Xing W.. High-quality hydrogen from the catalyzed decomposition of formic acid by Pd-Au/C and Pd-Ag/C[J]. Chem. Commun., 2008:3540-3542.
Huang Y., Zhou X., Yin M., Liu C., Xing W.. Novel PdAu@Au/C Core-Shell Catalyst:Superior Activity and Selectivity in Formic Acid Decomposition for Hydrogen Generation[J]. Chem. Mater., 2010,22:5122-5128. doi: 10.1021/cm101285f
Zhou X., Huang Y., Liu C.. Available hydrogen from formic acid decomposed by rare earth elements promoted Pd-Au/C catalysts at low temperature[J]. ChemSusChem, 2010,3:1379-1382. doi: 10.1002/cssc.201000199
Wang W., He T., Liu X.. Highly active carbon supported Pd-Ag nanofacets catalysts for hydrogen production from HCOOH[J]. ACS Appl. Mater. Interfaces, 2016,8:20839-20848. doi: 10.1021/acsami.6b08091
Ren M.J., Zhou Y., Tao F.F.. Controllable modification of the electronic structure of carbon-supported core-shell Cu@Pd catalysts for formic acid oxidation[J]. J. Phys. Chem. C, 2014,118:12669-12675. doi: 10.1021/jp5033417
Ren M., Kang Y., He W.. Origin of performance degradation of palladiumbased direct formic acid fuel cells[J]. App. Catal. B-Environ., 2011,104:49-53. doi: 10.1016/j.apcatb.2011.02.029
Govindaswamy P., Canivet J., Therrien B.. Mono and dinuclear rhodium, iridium and ruthenium complexes containing chelating 2, 20-bipyrimidine ligands:Synthesis, molecular structure, electrochemistry and catalytic properties[J]. J. Organomet. Chem., 2007,692:3664-3675. doi: 10.1016/j.jorganchem.2007.04.048
Luyan Shi , Ke Zhu , Yuting Yang , Qinrui Liang , Qimin Peng , Shuqing Zhou , Tayirjan Taylor Isimjan , Xiulin Yang . Phytic acid-derivative Co2B-CoPOx coralloidal structure with delicate boron vacancy for enhanced hydrogen generation from sodium borohydride. Chinese Chemical Letters, 2024, 35(4): 109222-. doi: 10.1016/j.cclet.2023.109222
Chunru Liu , Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136
Yiyue Ding , Qiuxiang Zhang , Lei Zhang , Qilu Yao , Gang Feng , Zhang-Hui Lu . Exceptional activity of amino-modified rGO-immobilized PdAu nanoclusters for visible light-promoted dehydrogenation of formic acid. Chinese Chemical Letters, 2024, 35(7): 109593-. doi: 10.1016/j.cclet.2024.109593
Yufeng Wu , Mingjun Jing , Juan Li , Wenhui Deng , Mingguang Yi , Zhanpeng Chen , Meixia Yang , Jinyang Wu , Xinkai Xu , Yanson Bai , Xiaoqing Zou , Tianjing Wu , Xianyou Wang . Collaborative integration of Fe-Nx active center into defective sulfur/selenium-doped carbon for efficient oxygen electrocatalysts in liquid and flexible Zn-air batteries. Chinese Chemical Letters, 2024, 35(9): 109269-. doi: 10.1016/j.cclet.2023.109269
Jiaqi Lin , Pupu Yang , Yimin Jiang , Shiqian Du , Dongcai Zhang , Gen Huang , Jinbo Wang , Jun Wang , Qie Liu , Miaoyu Li , Yujie Wu , Peng Long , Yangyang Zhou , Li Tao , Shuangyin Wang . Surface decoration prompting the decontamination of active sites in high-temperature proton exchange membrane fuel cells. Chinese Chemical Letters, 2024, 35(11): 109435-. doi: 10.1016/j.cclet.2023.109435
Huipeng Zhao , Xiaoqiang Du . Polyoxometalates as the redox anolyte for efficient conversion of biomass to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(2): 100246-100246. doi: 10.1016/j.cjsc.2024.100246
Guang-Xu Duan , Queting Chen , Rui-Rui Shao , Hui-Huang Sun , Tong Yuan , Dong-Hao Zhang . Encapsulating lipase on the surface of magnetic ZIF-8 nanosphers with mesoporous SiO2 nano-membrane for enhancing catalytic performance. Chinese Chemical Letters, 2025, 36(2): 109751-. doi: 10.1016/j.cclet.2024.109751
Hong Yin , Zhipeng Yu . Hexavalent iridium catalyst enhances efficiency of hydrogen production. Chinese Journal of Structural Chemistry, 2025, 44(1): 100382-100382. doi: 10.1016/j.cjsc.2024.100382
Hanqing Zhang , Xiaoxia Wang , Chen Chen , Xianfeng Yang , Chungli Dong , Yucheng Huang , Xiaoliang Zhao , Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089
Di Wang , Qing-Song Chen , Yi-Ran Lin , Yun-Xin Hou , Wei Han , Juan Yang , Xin Li , Zhen-Hai Wen . Tuning strategies and electrolyzer design for Bi-based nanomaterials towards efficient CO2 reduction to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(8): 100346-100346. doi: 10.1016/j.cjsc.2024.100346
Jian Ji , Jie Yan , Honggen Peng . Modulation of dinuclear site by orbital coupling to boost catalytic performance. Chinese Journal of Structural Chemistry, 2024, 43(8): 100360-100360. doi: 10.1016/j.cjsc.2024.100360
Guoping Yang , Zhoufu Lin , Xize Zhang , Jiawei Cao , Xuejiao Chen , Yufeng Liu , Xiaoling Lin , Ke Li . Assembly of Y(Ⅲ)-containing antimonotungstates induced by malic acid with catalytic activity for the synthesis of imidazoles. Chinese Chemical Letters, 2024, 35(12): 110274-. doi: 10.1016/j.cclet.2024.110274
Ke Wang , Jia Wu , Shuyi Zheng , Shibin Yin . NiCo Alloy Nanoparticles Anchored on Mesoporous Mo2N Nanosheets as Efficient Catalysts for 5-Hydroxymethylfurfural Electrooxidation and Hydrogen Generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100104-100104. doi: 10.1016/j.cjsc.2023.100104
Ming-Zhen Li , Yang Zhang , Kun Li , Ya-Nan Shang , Yi-Zhen Zhang , Yu-Jiao Kan , Zhi-Yang Jiao , Yu-Yuan Han , Xiao-Qiang Cao . In situ regeneration of catalyst for Fenton-like degradation by photogenerated electron transportation: Characterization, performance and mechanism comparison. Chinese Chemical Letters, 2025, 36(1): 109885-. doi: 10.1016/j.cclet.2024.109885
Jianmei Han , Peng Wang , Hua Zhang , Ning Song , Xuguang An , Baojuan Xi , Shenglin Xiong . Performance optimization of chalcogenide catalytic materials in lithium-sulfur batteries: Structural and electronic engineering. Chinese Chemical Letters, 2024, 35(7): 109543-. doi: 10.1016/j.cclet.2024.109543
Chen Lian , Si-Han Zhao , Hai-Lou Li , Xinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343
Lu Qi , Zhaoyang Chen , Xiaoyu Luan , Zhiqiang Zheng , Yurui Xue , Yuliang Li . Atomically dispersed Mn enhanced catalytic performance for overall water splitting on graphdiyne-coated copper hydroxide nanowire. Chinese Journal of Structural Chemistry, 2024, 43(1): 100197-100197. doi: 10.1016/j.cjsc.2023.100197
Zhenghua ZHAO , Qin ZHANG , Yufeng LIU , Zifa SHI , Jinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342
Weizhong LING , Xiangyun CHEN , Wenjing LIU , Yingkai HUANG , Yu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068
Yunfa Dong , Shijie Zhong , Yuhui He , Zhezhi Liu , Shengyu Zhou , Qun Li , Yashuai Pang , Haodong Xie , Yuanpeng Ji , Yuanpeng Liu , Jiecai Han , Weidong He . Modification strategies for non-aqueous, highly proton-conductive benzimidazole-based high-temperature proton exchange membranes. Chinese Chemical Letters, 2024, 35(4): 109261-. doi: 10.1016/j.cclet.2023.109261