Citation: Song Wei, Zhang Hai-Juan, Liu Ying-Hua, Ren Cui-Ling, Chen Hong-Li. A new fluorescence probing strategy for the detection of parathion-methyl based on N-doped carbon dots and methyl parathion hydrolase[J]. Chinese Chemical Letters, ;2017, 28(8): 1675-1680. doi: 10.1016/j.cclet.2017.05.001 shu

A new fluorescence probing strategy for the detection of parathion-methyl based on N-doped carbon dots and methyl parathion hydrolase

  • Corresponding author: Ren Cui-Ling, rencl@lzu.edu.cn
  • Received Date: 25 February 2017
    Revised Date: 17 April 2017
    Accepted Date: 4 May 2017
    Available Online: 6 August 2017

Figures(6)

  • A new facile fluorescence probing strategy, which was based on N-doped carbon dots (NCDs) and methyl parathion hydrolase (MPH), was developed for the determination of parathion-methyl (PM). The fluorescence intensity of NCDs-MPH system was proportional to PM concentration in the range of 2.38-73.78 μmol/L, with a detection limit of 0.338 μmol/L. Moreover, the present simple and facile method could be used to determine methyl parathion in environmental and agricultural samples successfully. Furthermore, the detection mechanism of this system is inner filter effect and molecular interactions between NCDs and p-nitrophenol, which is the hydrolysis product of PM catalyzed by methyl parathion hydrolase.
  • 加载中
    1. [1]

      Buratti F.M., Volpe M.T., Meneguz A., Vittozzi L., Testai E.. CYP-specific bioactivation of four organophosphorothioate pesticides by human liver microsomes[J]. Toxicol. Appl. Pharmacol., 2003,186:143-154. doi: 10.1016/S0041-008X(02)00027-3

    2. [2]

      Du D., Chen S., Cai J., Zhang A.. Immobilization of acetylcholinesterase on gold nanoparticles embedded in sol-gel film for amperometric detection of organophosphorous insecticide[J]. Biosens. Bioelectron., 2007,23:130-134. doi: 10.1016/j.bios.2007.03.008

    3. [3]

      Zhang H.X., Wei R.B., Chen C.Z., Tuo X.L., Wang X.G.. A novel fluorescent epoxy resin for organophosphate pesticide detection[J]. Chin. Chem. Lett., 2015,26:39-42. doi: 10.1016/j.cclet.2014.10.014

    4. [4]

      Remucal C.K.. The role of indirect photochemical degradation in the environmental fate of pesticides:a review[J]. Environ. Sci.:Processes Impacts., 2014,16:628-659. doi: 10.1039/c3em00549f

    5. [5]

      Beltran J., Pitarch E., Egea S., Lopez F.J., Hernandez F.. Gas chromatographic determination of selected pesticides in human serum by head-space solidphase microextraction[J]. Chromatographia, 2001,54:757-763. doi: 10.1007/BF02492495

    6. [6]

      Huang G.M., Ouyang J., Baeyens W.R.G., Yang Y.P., Tao C.J.. High-performance liquid chromatographic assay of dichlorvos, isocarbophos and methyl parathion from plant leaves using chemiluminescence detection[J]. Anal. Chim. Acta, 2002,474:21-29. doi: 10.1016/S0003-2670(02)01014-0

    7. [7]

      Cappiello A., Famiglini G., Palma P., Mangani F.. Trace level determination of organophosphorus pesticides inwater with the new direct-electron ionization LC/MS interface[J]. Anal. Chem., 2002,74:3547-3554. doi: 10.1021/ac015685f

    8. [8]

      Fernandez M., Pico Y., Girotti S., Manes J.. Analysis of organophosphorus pesticides in honeybee by liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry[J]. J. Agric. Food Chem., 2001,49:3540-3547. doi: 10.1021/jf010238m

    9. [9]

      Huang B.A., Zhang W.D., Chen C.H., Yu Y.X.. Electrochemical determination of methyl parathion at a Pd/MWCNTs-modified electrode[J]. Microchim. Acta, 2010,171:57-62. doi: 10.1007/s00604-010-0408-z

    10. [10]

      Zhao L.J., Zhao F.Q., Zeng B.Z.. Electrochemical determination of methyl parathion using a molecularly imprinted polymer-ionic liquid-graphene composite film coated electrode[J]. Sens. Actuators B, 2013,176:818-824. doi: 10.1016/j.snb.2012.10.003

    11. [11]

      Li C.Y., Wang Z.G., Zhan G.Q.. Electrochemical investigation of methyl parathion at gold-sodium dodecylbenzene sulfonate nanoparticles modified glassy carbon electrode[J]. Colloids Surf. B:Biointerfaces, 2011,82:40-45. doi: 10.1016/j.colsurfb.2010.08.011

    12. [12]

      Gong J.M., Miao X.J., Zhou T., Zhang L.Z.. An enzymeless organophosphate pesticide sensor using Au nanoparticle-decorated graphene hybrid nanosheet as solid-phase extraction[J]. Talanta, 2011,85:1344-1349. doi: 10.1016/j.talanta.2011.06.016

    13. [13]

      Musameh M., Notivoli M.R., Hickey M.. Carbon nanotube-Web modified electrodes for ultrasensitive detection of organophosphate pesticides[J]. Electrochim. Acta, 2013,101:209-215. doi: 10.1016/j.electacta.2012.11.030

    14. [14]

      Fu J., Tan X.H., Li Y.H., Song X.J.. A nanosilica/exfoliated graphene composite film-modified electrode for sensitive detection of methyl parathion[J]. Chin. Chem. Lett., 2016,27:1541-1546. doi: 10.1016/j.cclet.2016.07.007

    15. [15]

      Gao X., Tang G.C., Su X.G.. Optical detection of organophosphorus compounds based on Mn-doped ZnSe d-dot enzymatic catalytic sensor[J]. Biosens. Bioelectron., 2012,36:75-80. doi: 10.1016/j.bios.2012.03.042

    16. [16]

      Meng X.W., Wei J.F., Ren X.L., Ren J., Tang F.Q.. A simple and sensitive fluorescence biosensor for detection of organophosphorus pesticides using H2O2-sensit quantum dots/bi-enzyme[J]. Biosens. Bioelectron., 2013,47:402-407. doi: 10.1016/j.bios.2013.03.053

    17. [17]

      Liu D.B., Chen W.W., Wei J.H.. A highly sensitive, dual-readout assay based on gold nanoparticles for organophosphorus and carbamate pesticides[J]. Anal. Chem., 2012,84:4185-4191. doi: 10.1021/ac300545p

    18. [18]

      Yan X., Li H.X., Yan Y., Su X.G.. Selectivedetection of parathion-methyl based on near-infrared CuInS2 quantum dots[J]. Food Chem., 2015,173:179-184. doi: 10.1016/j.foodchem.2014.09.152

    19. [19]

      Lan W.S., Chen G.P., Cui F.. Development of a novel optical biosensor for detectionof organophoshorus pesticides based on methyl parathion hydrolase immobilized by metal-chelate affinity[J]. Sensors, 2012,12:8477-8490. doi: 10.3390/s120708477

    20. [20]

      Kumar J., Jha S.K., Souza S.F. D'. Optical microbial biosensor for detection of methyl parathion pesticide using Flavobacterium sp whole cells adsorbed on glass fiber filters as disposable biocomponent[J]. Biosens. Bioelectron., 2006,21:2100-2105. doi: 10.1016/j.bios.2005.10.012

    21. [21]

      Yang W., Zhou Y.F., Dai H.P.. Application of methyl parathion hydrolase (MPH) as a labeling enzyme[J]. Anal. Bioanal. Chem., 2008,390:2133-2140. doi: 10.1007/s00216-008-1987-y

    22. [22]

      Leng Y., Wei H.P., Zhang Z.P.. Integration of a fluorescent molecular biosensor into self-assembled protein nanowires:a large sensitivity enhancement[J]. Angew. Chem.Int. Ed., 2010,49:7243-7246. doi: 10.1002/anie.v49:40

    23. [23]

      Yan X., Li H.X., Wang X.Y., Su X.G.. A novel fluorescence probing strategy for the determination of parathion-methyl[J]. Talanta, 2015,131:88-94. doi: 10.1016/j.talanta.2014.07.032

    24. [24]

      Chen C., Wu Z.L., Wang T.T.. Preparation of highly luminescent nitrogen and sulfur co-doped carbon nanoparticles for iron (Ⅲ) ions detection and cell imaging[J]. Chin. Chem. Lett., 2017,28:1385-1390. doi: 10.1016/j.cclet.2017.03.022

    25. [25]

      Dong Y.J., Bartlam M., Sun L.. Crystal structure of methyl parathion hydrolase from Pseudomonas sp. WBC-3[J]. J. Mol. Biol, 2005,353:655-663. doi: 10.1016/j.jmb.2005.08.057

    26. [26]

      Zhang H.J., Chen Y.L., Liang M.J.. Solid-phase synthesis of highly fluorescent nitrogen-doped carbon dots for sensitive and selective probing ferric ions in living cells[J]. Anal. Chem., 2014,86:9846-9852. doi: 10.1021/ac502446m

    27. [27]

      Yang J.J., Yang C., Jiang H., Qiao C.L.. Over expression of methyl parathion hydrolase and its application in detoxification of organophosphates[J]. Biodegradation, 2008,19:831-839. doi: 10.1007/s10532-008-9186-2

    28. [28]

      Yang Y.M., Zhao Q., Feng W., Li F.Y.. Luminescent chemodosimeters for bioimaging[J]. Chem. Rev., 2013,113:192-270. doi: 10.1021/cr2004103

    29. [29]

      Yu L.X., Liu Y., Chen S.C., Guan Y., Wang Y.Z.. Reversible photoswitching aggregation and dissolution of spiropyran-functionalized copolymer and light-responsive FRET process[J]. Chin. Chem. Lett., 2014,25:389-396. doi: 10.1016/j.cclet.2013.12.014

    30. [30]

      Chen C.X., Zhao D., Hu T., Sun J., Yang X.. Highly fluorescent nitrogen and sulfur co-doped graphene quantum dots for an inner filter effect-based cyanide sensor[J]. Sens. Actuators B., 2017,241:779-788. doi: 10.1016/j.snb.2016.11.010

    31. [31]

      Wang X., Sheng P.T., Zhou L.P.. Fluorescence immunoassay of octachlorostyrene based on Forster resonance energy transfer between CdTe quantum dots and rhodamine B[J]. Biosens. Bioelectron., 2014,60:52-56. doi: 10.1016/j.bios.2014.03.056

    32. [32]

      He Y.L., Tian J.N., Zhang J.N.. DNAzyme self-assembled gold nanorodsbased FRET or polarization assay for ultrasensitive and selective detection of copper (Ⅱ) ion[J]. Biosens. Bioelectron., 2014,55:285-288. doi: 10.1016/j.bios.2013.12.032

    33. [33]

      Shao N., Zhang Y., Cheung S.M.. Copper ion-selective fluorescent sensor based on the inner filter effect using a spiropyran derivative[J]. Anal. Chem., 2005,77:7294-7303. doi: 10.1021/ac051010r

    34. [34]

      Rong M.C., Lin L.P., Song X.H.. A label-free fluorescence sensing approach for selective and sensitive detection of 2, 4, 6-trinitrophenol (TNP) in aqueous solution using graphitic carbon nitride nanosheets[J]. Anal. Chem., 2015,87:1288-1296. doi: 10.1021/ac5039913

    35. [35]

      Nagarkar S.S., Desai A.V., Ghosh S.K.. A fluorescent metal-organic framework for highly selective detection of nitro explosives in the aqueous phase[J]. Chem. Commun., 2014,50:8915-8918. doi: 10.1039/C4CC03053B

    36. [36]

      Ding A.X., Yang L.M., Zhang Y.Y.. Complex-formation-enhanced fluorescence quenching effect for efficient detection of picric acid[J]. Chem. Eur. J., 2014,20:12215-12222. doi: 10.1002/chem.v20.38

    37. [37]

      Tang X.S., Zhang D., Zhou T.S.. Fe3O4@AuAu sphere molecular imprinting with self-assembled monolayer for the recognition of parathion-methyl[J]. Anal Methods, 2011,3:2313-2321. doi: 10.1039/c1ay05279a

  • 加载中
    1. [1]

      Manman OuYunjian ZhuJiahao LiuZhaoxuan LiuJianjun WangJun SunChuanxiang QinLixing Dai . Polyvinyl alcohol fiber with enhanced strength and modulus and intense cyan fluorescence based on covalently functionalized graphene quantum dots. Chinese Chemical Letters, 2025, 36(2): 110510-. doi: 10.1016/j.cclet.2024.110510

    2. [2]

      Ying XuChengying ShenHailong YuanWei Wu . Mapping multiple phases in curcumin binary solid dispersions by fluorescence contrasting. Chinese Chemical Letters, 2024, 35(9): 109324-. doi: 10.1016/j.cclet.2023.109324

    3. [3]

      Deshuai ZhenChunlin LiuQiuhui DengShaoqi ZhangNingman YuanLe LiYu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249

    4. [4]

      Junqing WuYiyang ZhangQingqing HongHui YangLifeng ZhangMing ZhangLei Yu . Organometallic modification of silica with europium endowing the fluorescence properties: The key technique for numerical quality monitoring. Chinese Chemical Letters, 2025, 36(4): 110165-. doi: 10.1016/j.cclet.2024.110165

    5. [5]

      Kuan DengFei YangZhi-Qi ChengBi-Wen RenHua LiuJiao ChenMeng-Yao SheLe YuXiao-Gang LiuHai-Tao FengJian-Li Li . Construction of wavelength-tunable DSE quinoline salt derivatives by regulating the hybridization form of the nitrogen atom and intramolecular torsion angle. Chinese Chemical Letters, 2024, 35(10): 109464-. doi: 10.1016/j.cclet.2023.109464

    6. [6]

      Mengfan ZhangLingyan LiuPeng WeiWei FengTao Yi . A proximity tagging strategy utilizing an activated aldehyde group as the active site. Chinese Chemical Letters, 2025, 36(4): 110127-. doi: 10.1016/j.cclet.2024.110127

    7. [7]

      Ying WangHong YangCaixia ZhuQing HongXuwen CaoKaiyuan WangYuan XuYanfei ShenSongqin LiuYuanjian Zhang . Cascading oxidoreductases-like nanozymes for high selective and sensitive fluorescent detection of ascorbic acid. Chinese Chemical Letters, 2025, 36(4): 110153-. doi: 10.1016/j.cclet.2024.110153

    8. [8]

      Xuehua SUNMin MAJianting LIURui TIANHongmei CHAIHuali CUILoujun GAO . Pr/N co-doped biomass carbon dots with enhanced fluorescence for efficient detection of 2,4-dinitrophenylhydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 561-573. doi: 10.11862/CJIC.20240294

    9. [9]

      Peide ZhuYangjia LiuYaoyao TangSiqi ZhuXinyang LiuLei YinQuan LiuZhiqiang YuQuan XuDixian LuoJuncheng Wang . Bi-doped carbon quantum dots functionalized liposomes with fluorescence visualization imaging for tumor diagnosis and treatment. Chinese Chemical Letters, 2024, 35(4): 108689-. doi: 10.1016/j.cclet.2023.108689

    10. [10]

      Meiling XuXinyang LiPengyuan LiuJunjun LiuXiao HanGuodong ChaiShuangling ZhongBai YangLiying Cui . A novel and visible ratiometric fluorescence determination of carbaryl based on red emissive carbon dots by a solvent-free method. Chinese Chemical Letters, 2025, 36(2): 109860-. doi: 10.1016/j.cclet.2024.109860

    11. [11]

      Ziyou ZhangTe JiHongliang DongZhiqiang ChenZhi Su . Effect of coordination restriction on pressure-induced fluorescence evolution. Chinese Chemical Letters, 2024, 35(12): 109542-. doi: 10.1016/j.cclet.2024.109542

    12. [12]

      Minying WuXueliang FanWenbiao ZhangBin ChenTong YeQian ZhangYuanyuan FangYajun WangYi Tang . Highly dispersed Ru nanospecies on N-doped carbon/MXene composite for highly efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109258-. doi: 10.1016/j.cclet.2023.109258

    13. [13]

      Wenhao FengChunli LiuZheng LiuHuan PangIn-situ growth of N-doped graphene-like carbon/MOF nanocomposites for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(12): 109552-. doi: 10.1016/j.cclet.2024.109552

    14. [14]

      Yi ZhouYanzhen LiuYani YanZonglin YiYongfeng LiCheng-Meng Chen . Enhanced oxygen reduction reaction on La-Fe bimetal in porous N-doped carbon dodecahedra with CNTs wrapping. Chinese Chemical Letters, 2025, 36(1): 109569-. doi: 10.1016/j.cclet.2024.109569

    15. [15]

      Mengmeng AoJian WeiChuan-Shu HeHeng ZhangZhaokun XiongYonghui SongBo Lai . Insight into the activation of peroxymonosulfate by N-doped copper-based carbon for efficient degradation of organic pollutants: Synergy of nonradicals. Chinese Chemical Letters, 2025, 36(1): 109882-. doi: 10.1016/j.cclet.2024.109882

    16. [16]

      Chenhao ZhangQian ZhangYezhou HuHanyu HuJunhao YangChang YangYe ZhuZhengkai TuDeli Wang . N-doped carbon confined ternary Pt2NiCo intermetallics for efficient oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(3): 110429-. doi: 10.1016/j.cclet.2024.110429

    17. [17]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    18. [18]

      Qin Li Kexin Yang Qinglin Yang Xiangjin Zhu Xiaole Han Tao Huang . Illuminating Chlorophyll: Innovative Chemistry Popularization Experiment. University Chemistry, 2024, 39(9): 359-368. doi: 10.3866/PKU.DXHX202309059

    19. [19]

      Zehua Zhang Haitao Yu Yanyu Qi . 多重共振TADF分子的设计策略. Acta Physico-Chimica Sinica, 2025, 41(1): 2309042-. doi: 10.3866/PKU.WHXB202309042

    20. [20]

      Feng Lu Tao Wang Qi Wang . Preparation and Characterization of Water-Soluble Silver Nanoclusters: A New Design and Teaching Practice in Materials Chemistry Experiment. University Chemistry, 2025, 40(4): 375-381. doi: 10.12461/PKU.DXHX202406005

Metrics
  • PDF Downloads(0)
  • Abstract views(797)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return