A new fluorescence probing strategy for the detection of parathion-methyl based on N-doped carbon dots and methyl parathion hydrolase
- Corresponding author: Ren Cui-Ling, rencl@lzu.edu.cn
Citation:
Song Wei, Zhang Hai-Juan, Liu Ying-Hua, Ren Cui-Ling, Chen Hong-Li. A new fluorescence probing strategy for the detection of parathion-methyl based on N-doped carbon dots and methyl parathion hydrolase[J]. Chinese Chemical Letters,
;2017, 28(8): 1675-1680.
doi:
10.1016/j.cclet.2017.05.001
Buratti F.M., Volpe M.T., Meneguz A., Vittozzi L., Testai E.. CYP-specific bioactivation of four organophosphorothioate pesticides by human liver microsomes[J]. Toxicol. Appl. Pharmacol., 2003,186:143-154. doi: 10.1016/S0041-008X(02)00027-3
Du D., Chen S., Cai J., Zhang A.. Immobilization of acetylcholinesterase on gold nanoparticles embedded in sol-gel film for amperometric detection of organophosphorous insecticide[J]. Biosens. Bioelectron., 2007,23:130-134. doi: 10.1016/j.bios.2007.03.008
Zhang H.X., Wei R.B., Chen C.Z., Tuo X.L., Wang X.G.. A novel fluorescent epoxy resin for organophosphate pesticide detection[J]. Chin. Chem. Lett., 2015,26:39-42. doi: 10.1016/j.cclet.2014.10.014
Remucal C.K.. The role of indirect photochemical degradation in the environmental fate of pesticides:a review[J]. Environ. Sci.:Processes Impacts., 2014,16:628-659. doi: 10.1039/c3em00549f
Beltran J., Pitarch E., Egea S., Lopez F.J., Hernandez F.. Gas chromatographic determination of selected pesticides in human serum by head-space solidphase microextraction[J]. Chromatographia, 2001,54:757-763. doi: 10.1007/BF02492495
Huang G.M., Ouyang J., Baeyens W.R.G., Yang Y.P., Tao C.J.. High-performance liquid chromatographic assay of dichlorvos, isocarbophos and methyl parathion from plant leaves using chemiluminescence detection[J]. Anal. Chim. Acta, 2002,474:21-29. doi: 10.1016/S0003-2670(02)01014-0
Cappiello A., Famiglini G., Palma P., Mangani F.. Trace level determination of organophosphorus pesticides inwater with the new direct-electron ionization LC/MS interface[J]. Anal. Chem., 2002,74:3547-3554. doi: 10.1021/ac015685f
Fernandez M., Pico Y., Girotti S., Manes J.. Analysis of organophosphorus pesticides in honeybee by liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry[J]. J. Agric. Food Chem., 2001,49:3540-3547. doi: 10.1021/jf010238m
Huang B.A., Zhang W.D., Chen C.H., Yu Y.X.. Electrochemical determination of methyl parathion at a Pd/MWCNTs-modified electrode[J]. Microchim. Acta, 2010,171:57-62. doi: 10.1007/s00604-010-0408-z
Zhao L.J., Zhao F.Q., Zeng B.Z.. Electrochemical determination of methyl parathion using a molecularly imprinted polymer-ionic liquid-graphene composite film coated electrode[J]. Sens. Actuators B, 2013,176:818-824. doi: 10.1016/j.snb.2012.10.003
Li C.Y., Wang Z.G., Zhan G.Q.. Electrochemical investigation of methyl parathion at gold-sodium dodecylbenzene sulfonate nanoparticles modified glassy carbon electrode[J]. Colloids Surf. B:Biointerfaces, 2011,82:40-45. doi: 10.1016/j.colsurfb.2010.08.011
Gong J.M., Miao X.J., Zhou T., Zhang L.Z.. An enzymeless organophosphate pesticide sensor using Au nanoparticle-decorated graphene hybrid nanosheet as solid-phase extraction[J]. Talanta, 2011,85:1344-1349. doi: 10.1016/j.talanta.2011.06.016
Musameh M., Notivoli M.R., Hickey M.. Carbon nanotube-Web modified electrodes for ultrasensitive detection of organophosphate pesticides[J]. Electrochim. Acta, 2013,101:209-215. doi: 10.1016/j.electacta.2012.11.030
Fu J., Tan X.H., Li Y.H., Song X.J.. A nanosilica/exfoliated graphene composite film-modified electrode for sensitive detection of methyl parathion[J]. Chin. Chem. Lett., 2016,27:1541-1546. doi: 10.1016/j.cclet.2016.07.007
Gao X., Tang G.C., Su X.G.. Optical detection of organophosphorus compounds based on Mn-doped ZnSe d-dot enzymatic catalytic sensor[J]. Biosens. Bioelectron., 2012,36:75-80. doi: 10.1016/j.bios.2012.03.042
Meng X.W., Wei J.F., Ren X.L., Ren J., Tang F.Q.. A simple and sensitive fluorescence biosensor for detection of organophosphorus pesticides using H2O2-sensit quantum dots/bi-enzyme[J]. Biosens. Bioelectron., 2013,47:402-407. doi: 10.1016/j.bios.2013.03.053
Liu D.B., Chen W.W., Wei J.H.. A highly sensitive, dual-readout assay based on gold nanoparticles for organophosphorus and carbamate pesticides[J]. Anal. Chem., 2012,84:4185-4191. doi: 10.1021/ac300545p
Yan X., Li H.X., Yan Y., Su X.G.. Selectivedetection of parathion-methyl based on near-infrared CuInS2 quantum dots[J]. Food Chem., 2015,173:179-184. doi: 10.1016/j.foodchem.2014.09.152
Lan W.S., Chen G.P., Cui F.. Development of a novel optical biosensor for detectionof organophoshorus pesticides based on methyl parathion hydrolase immobilized by metal-chelate affinity[J]. Sensors, 2012,12:8477-8490. doi: 10.3390/s120708477
Kumar J., Jha S.K., Souza S.F. D'. Optical microbial biosensor for detection of methyl parathion pesticide using Flavobacterium sp whole cells adsorbed on glass fiber filters as disposable biocomponent[J]. Biosens. Bioelectron., 2006,21:2100-2105. doi: 10.1016/j.bios.2005.10.012
Yang W., Zhou Y.F., Dai H.P.. Application of methyl parathion hydrolase (MPH) as a labeling enzyme[J]. Anal. Bioanal. Chem., 2008,390:2133-2140. doi: 10.1007/s00216-008-1987-y
Leng Y., Wei H.P., Zhang Z.P.. Integration of a fluorescent molecular biosensor into self-assembled protein nanowires:a large sensitivity enhancement[J]. Angew. Chem.Int. Ed., 2010,49:7243-7246. doi: 10.1002/anie.v49:40
Yan X., Li H.X., Wang X.Y., Su X.G.. A novel fluorescence probing strategy for the determination of parathion-methyl[J]. Talanta, 2015,131:88-94. doi: 10.1016/j.talanta.2014.07.032
Chen C., Wu Z.L., Wang T.T.. Preparation of highly luminescent nitrogen and sulfur co-doped carbon nanoparticles for iron (Ⅲ) ions detection and cell imaging[J]. Chin. Chem. Lett., 2017,28:1385-1390. doi: 10.1016/j.cclet.2017.03.022
Dong Y.J., Bartlam M., Sun L.. Crystal structure of methyl parathion hydrolase from Pseudomonas sp. WBC-3[J]. J. Mol. Biol, 2005,353:655-663. doi: 10.1016/j.jmb.2005.08.057
Zhang H.J., Chen Y.L., Liang M.J.. Solid-phase synthesis of highly fluorescent nitrogen-doped carbon dots for sensitive and selective probing ferric ions in living cells[J]. Anal. Chem., 2014,86:9846-9852. doi: 10.1021/ac502446m
Yang J.J., Yang C., Jiang H., Qiao C.L.. Over expression of methyl parathion hydrolase and its application in detoxification of organophosphates[J]. Biodegradation, 2008,19:831-839. doi: 10.1007/s10532-008-9186-2
Yang Y.M., Zhao Q., Feng W., Li F.Y.. Luminescent chemodosimeters for bioimaging[J]. Chem. Rev., 2013,113:192-270. doi: 10.1021/cr2004103
Yu L.X., Liu Y., Chen S.C., Guan Y., Wang Y.Z.. Reversible photoswitching aggregation and dissolution of spiropyran-functionalized copolymer and light-responsive FRET process[J]. Chin. Chem. Lett., 2014,25:389-396. doi: 10.1016/j.cclet.2013.12.014
Chen C.X., Zhao D., Hu T., Sun J., Yang X.. Highly fluorescent nitrogen and sulfur co-doped graphene quantum dots for an inner filter effect-based cyanide sensor[J]. Sens. Actuators B., 2017,241:779-788. doi: 10.1016/j.snb.2016.11.010
Wang X., Sheng P.T., Zhou L.P.. Fluorescence immunoassay of octachlorostyrene based on Forster resonance energy transfer between CdTe quantum dots and rhodamine B[J]. Biosens. Bioelectron., 2014,60:52-56. doi: 10.1016/j.bios.2014.03.056
He Y.L., Tian J.N., Zhang J.N.. DNAzyme self-assembled gold nanorodsbased FRET or polarization assay for ultrasensitive and selective detection of copper (Ⅱ) ion[J]. Biosens. Bioelectron., 2014,55:285-288. doi: 10.1016/j.bios.2013.12.032
Shao N., Zhang Y., Cheung S.M.. Copper ion-selective fluorescent sensor based on the inner filter effect using a spiropyran derivative[J]. Anal. Chem., 2005,77:7294-7303. doi: 10.1021/ac051010r
Rong M.C., Lin L.P., Song X.H.. A label-free fluorescence sensing approach for selective and sensitive detection of 2, 4, 6-trinitrophenol (TNP) in aqueous solution using graphitic carbon nitride nanosheets[J]. Anal. Chem., 2015,87:1288-1296. doi: 10.1021/ac5039913
Nagarkar S.S., Desai A.V., Ghosh S.K.. A fluorescent metal-organic framework for highly selective detection of nitro explosives in the aqueous phase[J]. Chem. Commun., 2014,50:8915-8918. doi: 10.1039/C4CC03053B
Ding A.X., Yang L.M., Zhang Y.Y.. Complex-formation-enhanced fluorescence quenching effect for efficient detection of picric acid[J]. Chem. Eur. J., 2014,20:12215-12222. doi: 10.1002/chem.v20.38
Tang X.S., Zhang D., Zhou T.S.. Fe3O4@AuAu sphere molecular imprinting with self-assembled monolayer for the recognition of parathion-methyl[J]. Anal Methods, 2011,3:2313-2321. doi: 10.1039/c1ay05279a
Manman Ou , Yunjian Zhu , Jiahao Liu , Zhaoxuan Liu , Jianjun Wang , Jun Sun , Chuanxiang Qin , Lixing Dai . Polyvinyl alcohol fiber with enhanced strength and modulus and intense cyan fluorescence based on covalently functionalized graphene quantum dots. Chinese Chemical Letters, 2025, 36(2): 110510-. doi: 10.1016/j.cclet.2024.110510
Ying Xu , Chengying Shen , Hailong Yuan , Wei Wu . Mapping multiple phases in curcumin binary solid dispersions by fluorescence contrasting. Chinese Chemical Letters, 2024, 35(9): 109324-. doi: 10.1016/j.cclet.2023.109324
Deshuai Zhen , Chunlin Liu , Qiuhui Deng , Shaoqi Zhang , Ningman Yuan , Le Li , Yu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249
Junqing Wu , Yiyang Zhang , Qingqing Hong , Hui Yang , Lifeng Zhang , Ming Zhang , Lei Yu . Organometallic modification of silica with europium endowing the fluorescence properties: The key technique for numerical quality monitoring. Chinese Chemical Letters, 2025, 36(4): 110165-. doi: 10.1016/j.cclet.2024.110165
Kuan Deng , Fei Yang , Zhi-Qi Cheng , Bi-Wen Ren , Hua Liu , Jiao Chen , Meng-Yao She , Le Yu , Xiao-Gang Liu , Hai-Tao Feng , Jian-Li Li . Construction of wavelength-tunable DSE quinoline salt derivatives by regulating the hybridization form of the nitrogen atom and intramolecular torsion angle. Chinese Chemical Letters, 2024, 35(10): 109464-. doi: 10.1016/j.cclet.2023.109464
Mengfan Zhang , Lingyan Liu , Peng Wei , Wei Feng , Tao Yi . A proximity tagging strategy utilizing an activated aldehyde group as the active site. Chinese Chemical Letters, 2025, 36(4): 110127-. doi: 10.1016/j.cclet.2024.110127
Ying Wang , Hong Yang , Caixia Zhu , Qing Hong , Xuwen Cao , Kaiyuan Wang , Yuan Xu , Yanfei Shen , Songqin Liu , Yuanjian Zhang . Cascading oxidoreductases-like nanozymes for high selective and sensitive fluorescent detection of ascorbic acid. Chinese Chemical Letters, 2025, 36(4): 110153-. doi: 10.1016/j.cclet.2024.110153
Xuehua SUN , Min MA , Jianting LIU , Rui TIAN , Hongmei CHAI , Huali CUI , Loujun GAO . Pr/N co-doped biomass carbon dots with enhanced fluorescence for efficient detection of 2,4-dinitrophenylhydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 561-573. doi: 10.11862/CJIC.20240294
Peide Zhu , Yangjia Liu , Yaoyao Tang , Siqi Zhu , Xinyang Liu , Lei Yin , Quan Liu , Zhiqiang Yu , Quan Xu , Dixian Luo , Juncheng Wang . Bi-doped carbon quantum dots functionalized liposomes with fluorescence visualization imaging for tumor diagnosis and treatment. Chinese Chemical Letters, 2024, 35(4): 108689-. doi: 10.1016/j.cclet.2023.108689
Meiling Xu , Xinyang Li , Pengyuan Liu , Junjun Liu , Xiao Han , Guodong Chai , Shuangling Zhong , Bai Yang , Liying Cui . A novel and visible ratiometric fluorescence determination of carbaryl based on red emissive carbon dots by a solvent-free method. Chinese Chemical Letters, 2025, 36(2): 109860-. doi: 10.1016/j.cclet.2024.109860
Ziyou Zhang , Te Ji , Hongliang Dong , Zhiqiang Chen , Zhi Su . Effect of coordination restriction on pressure-induced fluorescence evolution. Chinese Chemical Letters, 2024, 35(12): 109542-. doi: 10.1016/j.cclet.2024.109542
Minying Wu , Xueliang Fan , Wenbiao Zhang , Bin Chen , Tong Ye , Qian Zhang , Yuanyuan Fang , Yajun Wang , Yi Tang . Highly dispersed Ru nanospecies on N-doped carbon/MXene composite for highly efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109258-. doi: 10.1016/j.cclet.2023.109258
Wenhao Feng , Chunli Liu , Zheng Liu , Huan Pang . In-situ growth of N-doped graphene-like carbon/MOF nanocomposites for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(12): 109552-. doi: 10.1016/j.cclet.2024.109552
Yi Zhou , Yanzhen Liu , Yani Yan , Zonglin Yi , Yongfeng Li , Cheng-Meng Chen . Enhanced oxygen reduction reaction on La-Fe bimetal in porous N-doped carbon dodecahedra with CNTs wrapping. Chinese Chemical Letters, 2025, 36(1): 109569-. doi: 10.1016/j.cclet.2024.109569
Mengmeng Ao , Jian Wei , Chuan-Shu He , Heng Zhang , Zhaokun Xiong , Yonghui Song , Bo Lai . Insight into the activation of peroxymonosulfate by N-doped copper-based carbon for efficient degradation of organic pollutants: Synergy of nonradicals. Chinese Chemical Letters, 2025, 36(1): 109882-. doi: 10.1016/j.cclet.2024.109882
Chenhao Zhang , Qian Zhang , Yezhou Hu , Hanyu Hu , Junhao Yang , Chang Yang , Ye Zhu , Zhengkai Tu , Deli Wang . N-doped carbon confined ternary Pt2NiCo intermetallics for efficient oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(3): 110429-. doi: 10.1016/j.cclet.2024.110429
YanYuan Jia , Rong Rong , Jie Liu , Jing Guo , GuoYu Jiang , Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035
Qin Li , Kexin Yang , Qinglin Yang , Xiangjin Zhu , Xiaole Han , Tao Huang . Illuminating Chlorophyll: Innovative Chemistry Popularization Experiment. University Chemistry, 2024, 39(9): 359-368. doi: 10.3866/PKU.DXHX202309059
Zehua Zhang , Haitao Yu , Yanyu Qi . 多重共振TADF分子的设计策略. Acta Physico-Chimica Sinica, 2025, 41(1): 2309042-. doi: 10.3866/PKU.WHXB202309042
Feng Lu , Tao Wang , Qi Wang . Preparation and Characterization of Water-Soluble Silver Nanoclusters: A New Design and Teaching Practice in Materials Chemistry Experiment. University Chemistry, 2025, 40(4): 375-381. doi: 10.12461/PKU.DXHX202406005