Citation: Bi Mei-Xiang, Qian Peng, Wang Yu-Kang, Zha Zheng-Gen, Wang Zhi-Yong. Decarboxylative bromination of α, β-unsaturated carboxylic acids via an anodic oxidation[J]. Chinese Chemical Letters, ;2017, 28(6): 1159-1162. doi: 10.1016/j.cclet.2017.04.030 shu

Decarboxylative bromination of α, β-unsaturated carboxylic acids via an anodic oxidation

  • Corresponding author: Zha Zheng-Gen, zgzha@ustc.edu.cn Wang Zhi-Yong, zwang3@ustc.edu.cn
  • Received Date: 14 February 2017
    Revised Date: 19 April 2017
    Accepted Date: 25 April 2017
    Available Online: 29 June 2017

Figures(3)

  • A novel bromination of α, β-unsaturated carboxylic acids was developed via a decarboxylation by virtue of a direct anodic electro-oxidation. In this method, ammonium bromide was employed as a bromine source and the reaction features transition-metal-free, short time, and no additional supporting electrolyte.
  • 加载中
    1. [1]

      Hunsdiecker H., Hunsdiecker C.. Über den Abbau der Salzealiphatischer Säurendurch Brom[J]. Ber, 1942,75:291-297.

    2. [2]

      Cristol S., Firth Jr W.. A convenient synthesis of alkyl halides from carboxylic acids[J]. J. Org. Chem., 1961,26280. doi: 10.1021/jo01060a628

    3. [3]

      Naskar D., Roy S.. Synthesis of α-bromo-β-lactam via a novel catalytic Hunsdiecker like protocol[J]. J. Chem. Soc. Perkin Trans., 1999,1:2435-2436.  

    4. [4]

      Khamarui S., Sarkar D., Pandit P., Maiti D.K.. A fast and selective decarboxylativ edifunctionalization and cyclization for easy access to gem-dihalo alcohol ether[J]. ester and bromo-1, 4-dioxane, Chem. Commun., 2011,47:12667-12669.

    5. [5]

      Kuang C.X., Senboku H., Tokuda M.. Stereoselective synthesis of (E)-b-arylvinyl bromides by microwave-induced reaction of anti-3-aryl-2.3-dibromopropanoic acids using an AgOAc-AcOH system[J]. Tetrahedron, 2005,61:637-642. doi: 10.1016/j.tet.2004.10.102

    6. [6]

      Sheldon R.A., Kochi J.K.. Oxidative decarboxylation of acids by lead tetraacetate[J]. J. Org. React., 1972,19:275-278.  

    7. [7]

      Das J.P., Roy S.. Catalytic Hunsdiecker reaction of α.β-unsaturated carboxylic acids:how efficient is the catalyst?,[J]. J. Org. Chem., 2002,67:7861-7864. doi: 10.1021/jo025868h

    8. [8]

      Graven A., Joergensen K.A., Dahl S., Stanczak A.. Oxidative halodecarboxylation of α.β-unsaturated carboxylic acids[J]. J. Org. Chem., 1994,59:3543-3546. doi: 10.1021/jo00092a009

    9. [9]

      Telvekar V.N., Takale B.S.. A novel method for bromo-decarboxylation of α.β-unsaturated carboxylic acids using catalytic sodium nitrite[J]. Tetrahedron Lett., 2011,52:2394-2396. doi: 10.1016/j.tetlet.2011.02.101

    10. [10]

      Zhang L., Chen H., Zha Z.G., Wang Z.Y.. Electrochemical tandem synthesis of oximes from alcohols using KNO3 as the nitrogen source. mediated by tin microspheres in aqueous medium[J]. Chem. Commun., 2012,48:6574-6576. doi: 10.1039/c2cc32800c

    11. [11]

      Meng L., Su J.H., Zha Z.G., Zhang L., Wang Z.Y.. Direct electrosynthesis of ketones from benzylicmethylenes by electrooxidative C-H activation[J]. Chem. Eur. J., 2013,19:5542-5545. doi: 10.1002/chem.v19.18

    12. [12]

      Zhang Z.L., Su J.H., Zha Z.G., Wang Z.Y.. Electrochemical synthesis of the aryl α-ketoesters from acetophenones mediated by KI[J]. Chem. Eur. J., 2013,19:17711-17714. doi: 10.1002/chem.201302307

    13. [13]

      Ye J.Q., Zhang Z.L., Zha Z.G., Wang Z.Y.. A green and efficient access to aryl nitriles via an electrochemical anodic oxidation[J]. Chin.Chem. Lett., 2014,25:1112-1114. doi: 10.1016/j.cclet.2014.04.024

    14. [14]

      Gao H.H., Zha Z.G., Zhang Z.L., Ma H.Y., Wang Z.Y.. A simple and efficient approach to realize difunctionalization of arylketones withmalonate estersvia an electrochemical oxidation[J]. Chem. Commun., 2014,50:5034-5036. doi: 10.1039/C4CC01277A

    15. [15]

      Xu K., Zhang Z.L., Qian P., Zha Z.G., Wang Z.Y.. Electrosynthesis of enaminones directly from methyl ketones and amines with nitromethane as a carbon source[J]. Chem. Commun., 2015,51:11108-11111. doi: 10.1039/C5CC02730F

    16. [16]

      Qian P., Bi M.X., Su J.H., Zha Z.G., Wang Z.Y.. Electrosynthesis of (E)-vinyl sulfonesdirectly from cinnamicacids and sodium sulfinates via decarboxylative sulfonofunctionalization[J]. J. Org. Chem., 2016,81:4876-4882. doi: 10.1021/acs.joc.6b00661

    17. [17]

      G.D. Allen, M.C. Buzzeo, C. Villagra'n, C. Hardacre, R.G. Compton, A mechanistic studyofthe electro-oxidation of bromide in acetonitrile and the room temperature ionic liquid, 1-butyl-3-methylimidazolium bis (trifluoromethylsulfonyl)imide at platinum electrodes, J. Electroanal. Chem. 575(2005) 311-320.

    18. [18]

      I. Damljanovic', D. Stevanovic', M. Vukic'evic', R.D. Vukic'evic, Electrochemical bromochlorination of peracetylated glycols, Carbohydr. Res. 346(2011) 2683-2687.

    19. [19]

      L.S. Kang, M.H. Luo, C.M. Lam, et al., Electrochemical C-H functionalization and subsequent C-S and C-N bond formation:Paired electrosynthesis of 3-amino-2-thiocyanatoa, α.β-unsaturated carbonylderivatives mediated by bromide ion, Green Chem. 18(2016) 3767-3774.

    20. [20]

      Zhang C.W., Xu L.B., Chen J.F.. High loading Pt nanoparticles on ordered mesoporous carbon spherearrays for high lyactive methanol electrooxidation[J]. Chin. Chem. Lett., 2016,27:832-836. doi: 10.1016/j.cclet.2016.02.025

    21. [21]

      Rahbar N., Ramezani Z., Ghanavati J.. CuO-nanoparticles modified carbon paste electrode or square wave voltammetric determination of lidocaine:Comparing classical and Box-Behnken optimization methodologies[J]. Chin. Chem. Lett., 2016,27:837-842. doi: 10.1016/j.cclet.2016.04.017

    22. [22]

      Wu R.Q., Beauchamps M.G., Laquidara J.M., Sowa Jr J.R.. Ruthenium-catalyzed asymmetric transfer hydrogenation of allylic alcohols by an enantioselective isomerization/transfer hydrogenation mechanism[J]. Angew. Chem. Int. Ed., 2012,51:2106-2110. doi: 10.1002/anie.201107910

  • 加载中
    1. [1]

      Yifen HeChao QuNa RenDawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262

    2. [2]

      Hao WANGKun TANGJiangyang SHAOKezhi WANGYuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176

    3. [3]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    4. [4]

      Wenjing Dai Lan Luo Zhen Yin . Interface reconstruction of hybrid oxide electrocatalysts for seawater oxidation. Chinese Journal of Structural Chemistry, 2025, 44(3): 100442-100442. doi: 10.1016/j.cjsc.2024.100442

    5. [5]

      Yutong Xiong Ting Meng Wendi Luo Bin Tu Shuai Wang Qingdao Zeng . Molecular conformational effects on co-assembly systems of low-symmetric carboxylic acids investigated by scanning tunneling microscopy. Chinese Journal of Structural Chemistry, 2025, 44(2): 100511-100511. doi: 10.1016/j.cjsc.2025.100511

    6. [6]

      Gang HuChun WangQinqin WangMingyuan ZhuLihua Kang . The controlled oxidation states of the H4PMo11VO40 catalyst induced by plasma for the selective oxidation of methacrolein. Chinese Chemical Letters, 2025, 36(2): 110298-. doi: 10.1016/j.cclet.2024.110298

    7. [7]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    8. [8]

      Yang Yang Jing-Li Luo Xian-Zhu Fu . Water-oxidation intermediates enabling electrochemical propylene epoxidation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100269-100269. doi: 10.1016/j.cjsc.2024.100269

    9. [9]

      Gu GongMengzhu LiNing SunTing ZhiYuhao HeJunan PanYuntao CaiLonglu Wang . Versatile oxidized variants derived from TMDs by various oxidation strategies and their applications. Chinese Chemical Letters, 2024, 35(6): 108705-. doi: 10.1016/j.cclet.2023.108705

    10. [10]

      Erzhuo ChengYunyi LiWei YuanWei GongYanjun CaiYuan GuYong JiangYu ChenJingxi ZhangGuangquan MoBin Yang . Galvanostatic method assembled ZIFs nanostructure as novel nanozyme for the glucose oxidation and biosensing. Chinese Chemical Letters, 2024, 35(9): 109386-. doi: 10.1016/j.cclet.2023.109386

    11. [11]

      Zhipeng Wan Hao Xu Peng Wu . Selective oxidation using in-situ generated hydrogen peroxide over titanosilicates. Chinese Journal of Structural Chemistry, 2024, 43(6): 100298-100298. doi: 10.1016/j.cjsc.2024.100298

    12. [12]

      Huangjie Lu Yingzhe Du Peng Lin Jian Lin . Separation of americium from lanthanides based on oxidation state control. Chinese Journal of Structural Chemistry, 2024, 43(10): 100344-100344. doi: 10.1016/j.cjsc.2024.100344

    13. [13]

      Xian YanHuawei XieGao WuFang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279

    14. [14]

      Qinwei LuJinjie LuJuying LeiXubiao LuoYanbo Zhou . Cyclodextrin-boosted photocatalytic oxidation for efficient bisphenol A removal. Chinese Chemical Letters, 2025, 36(3): 110017-. doi: 10.1016/j.cclet.2024.110017

    15. [15]

      Xiaoxue LiHongwei ZhouRongrong QianXu ZhangLei Yu . A concise synthesis of Se/Fe materials for catalytic oxidation reactions of anthracene and polyene. Chinese Chemical Letters, 2025, 36(3): 110036-. doi: 10.1016/j.cclet.2024.110036

    16. [16]

      Zhiqiang WangYajie GaoTianjun WangWei ChenZefeng RenXueming YangChuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602

    17. [17]

      Zhenkang AiHui ChenXuebin Liao . Nickel-catalyzed decarboxylative difluoromethylation and alkylation of alkenes. Chinese Chemical Letters, 2025, 36(3): 109954-. doi: 10.1016/j.cclet.2024.109954

    18. [18]

      Jian PengYue JiangShuangyu WuYanran ChengJingyu LiangYixin WangZhuo LiSijie Lin . A nonradical oxidation process initiated by Ti-peroxo complex showed high specificity toward the degradation of tetracycline antibiotics. Chinese Chemical Letters, 2024, 35(5): 108903-. doi: 10.1016/j.cclet.2023.108903

    19. [19]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Boosting bulk charge transport of CuWO4 photoanodes via Cs doping for solar water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100207-100207. doi: 10.1016/j.cjsc.2023.100207

    20. [20]

      Guo-Hong GaoRun-Ze ZhaoYa-Jun WangXiao MaYan LiJian ZhangJi-Sen Li . Core–shell heterostructure engineering of CoP nanowires coupled NiFe LDH nanosheets for highly efficient water/seawater oxidation. Chinese Chemical Letters, 2024, 35(8): 109181-. doi: 10.1016/j.cclet.2023.109181

Metrics
  • PDF Downloads(2)
  • Abstract views(958)
  • HTML views(75)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return