Inverted polymer solar cells with Zn2SnO4 nanoparticles as the electron extraction layer
- Corresponding author: Gong Xiong, xgong@uakron.edu 1 These authors made equal contribution to this work
Citation:
Huang Xiao-Juan, Yao Xiang, Xu Wen-Zhan, Wang Kai, Huang Fei, Gong Xiong, Cao Yong. Inverted polymer solar cells with Zn2SnO4 nanoparticles as the electron extraction layer[J]. Chinese Chemical Letters,
;2017, 28(8): 1755-1759.
doi:
10.1016/j.cclet.2017.04.011
Benka S.G.. The energy challenge[J]. Physics Today, 2002,55:38-39.
Youn H., Park H.J., Guo L.J.. Organic photovoltaic cells:from performance improvement to manufacturing processes[J]. Small, 2015,11:2228-2246. doi: 10.1002/smll.v11.19
Han C., Cheng Y., Chen L L.. Enhanced performance of inverted polymer solar cells by combining ZnO nanoparticles and poly (9, 9-bis(3'-(N, N-dimethylamino)propyl)-2, 7-fluorene)-alt-2, 7-(9, 9-dioctyfluorene) as electron transport layer[J]. ACS Appl. Mater. Int., 2016,8:3301-3307. doi: 10.1021/acsami.5b11140
Pivrikas A., Sariciftci N.S., Juška G., Österbacka R.. A review of charge transport and recombination in polymer/fullerene organic solar cells[J]. Prog. Photovoltaics:Res. Appl., 2007,15:677-696. doi: 10.1002/(ISSN)1099-159X
Li S., Liu W., Shi M.. A spirobifluorene and diketopyrrolopyrrole moieties based non-fullerene acceptor for efficient and thermally stable polymer solar cells with high open-circuit voltage[J]. Energy Environ. Sci., 2016,9:604-610. doi: 10.1039/C5EE03481G
Yip H.L., Hau S.K., Baek N.S.. Polymer solar cells that use self-assembledmonolayer-modified ZnO/metals as cathodes[J]. Adv. Mater., 2008,20:2376-2382. doi: 10.1002/adma.v20:12
Bulliard X., Ihn S.G., Yun S.. Enhanced performance in polymer solar cells by surface energy control[J]. Adv. Funct. Mater., 2010,20:4381-4387. doi: 10.1002/adfm.v20.24
Nian L., Zhang W., Zhu N.. Photoconductive cathode interlayer for highly efficient inverted polymer solar cells[J]. J. Am. Chem. Soc., 2015,137:6995-6998. doi: 10.1021/jacs.5b02168
Liu C., Yi C., Wang K.. Single-junction polymer solar cells with over 10% efficiency by a novel two-dimensional donor-acceptor conjugated copolymer[J]. ACS Appl. Mater. Interfaces, 2015,7:4928-4935. doi: 10.1021/am509047g
Krebs F.C., Norrman K.. Analysis of the failure mechanism for a stable organic photovoltaic during 10000 h of testing[J]. Prog. Photovoltaics:Res. Appl., 2007,15:697-712. doi: 10.1002/(ISSN)1099-159X
Li G., Chu C.W., Shrotriya V.. Efficient inverted polymer solar cells[J]. Appl. Phys. Lett., 2006,88253503. doi: 10.1063/1.2212270
Hau S.K., Yip H.L., Acton O.. Interfacial modification to improve inverted polymer solar cells[J]. J. Mater. Chem., 2008,18:5113-5119. doi: 10.1039/b808004f
Hau S.K., Yip H.L., Baek N.S.. Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer[J]. Appl. Phys. Lett., 2008,92253301. doi: 10.1063/1.2945281
Liao S.H., Jhuo H.J., Cheng Y.S.. Fullerene derivative-doped zinc oxide nanofilm as the cathode of inverted polymer solar cells with lowbandgap polymer (PTB7-Th) for high performance[J]. Adv. Mater., 2013,25:4766-4771. doi: 10.1002/adma.v25.34
Chen S., Du X., Ye G.. Thermo-cleavable fullerene materials as buffer layers for efficient polymer solar cells[J]. J. Mater. Chem. A, 2013,1:11170-11176. doi: 10.1039/c3ta11811h
Kyaw A.K.K., Sun X.W., Jiang C.Y.. An inverted organic solar cell employing a sol-gel derived ZnO electron selective layer and thermal evaporated MoO3 hole selective layer[J]. Appl. Phys. Lett., 2008,93221107. doi: 10.1063/1.3039076
Hsieh C.H., Cheng Y.J., Li P.J.. Highly efficient and stable inverted polymer solar cells integrated with a cross-linked fullerene material as an interlayer[J]. J. Am. Chem. Soc., 2010,132:4887-4893. doi: 10.1021/ja100236b
Stambolova I., Konstantinov K., Kovacheva D.. Spray pyrolysis preparation and humidity sensing characteristics of spinel zinc stannate thin films[J]. J. Solid State Chem., 1997,128:305-309. doi: 10.1006/jssc.1996.7174
Yu J.H., Choi G.M.. Current-voltage characteristics and selective CO detection of Zn2SnO4 and ZnO/Zn2SnO4, SnO2/Zn2SnO4 layered-type sensors[J]. Sens. Actuat. B:Chem., 2001,72:141-148. doi: 10.1016/S0925-4005(00)00642-0
Belliard F., Connor P.A., Irvine J.T.S.. Novel tin oxide-based anodes for Li-ion batteries[J]. Solid State Ionics, 2000,135:163-167. doi: 10.1016/S0167-2738(00)00296-4
Rong A., Gao X.P., Li G.R.. Hydrothermal synthesis of Zn2SnO4 as anode materials for Li-ion battery[J]. J. Phys. Chem. B, 2006,110:14754-14760. doi: 10.1021/jp062875r
Lou X., Jia X., Xu J.. Hydrothermal synthesis, characterization and photocatalytic properties of Zn2SnO4 nanocrystal, Mater[J]. Sci. Eng. A, 2006,432:221-225. doi: 10.1016/j.msea.2006.06.010
Cun W., Wang X.M., Zhao J.C.. Synthesis, characterization and photocatalytic property of nano-sized Zn2SnO4[J]. J. Mater. Sci., 2002,37:2989-2996. doi: 10.1023/A:1016077216172
Wang S., Yang Z., Lu M.. Coprecipitation synthesis of hollow Zn2SnO4 spheres[J]. Mater. Lett., 2007,61:3005-3008. doi: 10.1016/j.matlet.2006.07.197
Patterson A.L.. The scherrer formula for X-ray particle size determination[J]. Phys. Rev., 1939,56:978-982. doi: 10.1103/PhysRev.56.978
Wu Z., Song T., Xia Z.. Enhanced performance of polymer solar cell with ZnO nanoparticle electron transporting layer passivated byin situcross-linked three-dimensional polymer network[J]. Nanotechnology, 2013,24484012. doi: 10.1088/0957-4484/24/48/484012
He Z., Zhang C., Xu X.. Largely enhanced efficiency with a PFN/Al bilayer cathode in high efficiency bulk heterojunction photovoltaic cells with a low bandgap polycarbazole donor[J]. Adv. Mater., 2011,23:3086-3089. doi: 10.1002/adma.v23.27
Shin S.S., Yang W.S., Noh J.H.. High-performance flexible perovskite solar cells exploiting Zn2SnO4 prepared in solution below 100 degrees C[J]. Nature Commun., 2015,67410. doi: 10.1038/ncomms8410
He Z., Zhong C., Su S.. Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure[J]. Nature Photon., 2012,6:593-597. doi: 10.1038/nphoton.2012.190
Haowen Shang , Yujie Yang , Bingjie Xue , Yikai Wang , Zhiyi Su , Wenlong Liu , Youzhi Wu , Xinjun Xu . Efficient solution-processed near-infrared organic light-emitting diodes with a binary-mixed electron transport layer. Chinese Chemical Letters, 2025, 36(4): 110511-. doi: 10.1016/j.cclet.2024.110511
Fei Jin , Bolin Yang , Xuanpu Wang , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198
Kai Han , Guohui Dong , Ishaaq Saeed , Tingting Dong , Chenyang Xiao . Boosting bulk charge transport of CuWO4 photoanodes via Cs doping for solar water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100207-100207. doi: 10.1016/j.cjsc.2023.100207
Shaonan Liu , Shuixing Dai , Minghua Huang . The impact of ester groups on 1,8-naphthalimide electron transport material in organic solar cells. Chinese Journal of Structural Chemistry, 2024, 43(6): 100277-100277. doi: 10.1016/j.cjsc.2024.100277
Yikai Wang , Xiaolin Jiang , Haoming Song , Nan Wei , Yifan Wang , Xinjun Xu , Cuihong Li , Hao Lu , Yahui Liu , Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007
Boyuan Hu , Jian Zhang , Yulin Yang , Yayu Dong , Jiaqi Wang , Wei Wang , Kaifeng Lin , Debin Xia . Dual-functional POM@IL complex modulate hole transport layer properties and interfacial charge dynamics for highly efficient and stable perovskite solar cells. Chinese Chemical Letters, 2024, 35(7): 108933-. doi: 10.1016/j.cclet.2023.108933
Chi Li , Peng Gao . Is dipole the only thing that matters for inverted perovskite solar cells?. Chinese Journal of Structural Chemistry, 2024, 43(6): 100324-100324. doi: 10.1016/j.cjsc.2024.100324
Yaohua Li , Qi Cao , Xuanhua Li . Tailoring the configuration of polymer passivators in perovskite solar cells. Chinese Journal of Structural Chemistry, 2025, 44(2): 100413-100413. doi: 10.1016/j.cjsc.2024.100413
Xiao-Fang Lv , Xiao-Yun Ran , Yu Zhao , Rui-Rui Zhang , Li-Na Zhang , Jing Shi , Ji-Xuan Xu , Qing-Quan Kong , Xiao-Qi Yu , Kun Li . Combing NIR-Ⅱ molecular dye with magnetic nanoparticles for enhanced photothermal theranostics with a 95.6% photothermal conversion efficiency. Chinese Chemical Letters, 2025, 36(4): 110027-. doi: 10.1016/j.cclet.2024.110027
Kangrong Yan , Ziqiu Shen , Yanchun Huang , Benfang Niu , Hongzheng Chen , Chang-Zhi Li . Curing the vulnerable heterointerface via organic-inorganic hybrid hole transporting bilayers for efficient inverted perovskite solar cells. Chinese Chemical Letters, 2024, 35(6): 109516-. doi: 10.1016/j.cclet.2024.109516
Jiangqi Ning , Junhan Huang , Yuhang Liu , Yanlei Chen , Qing Niu , Qingqing Lin , Yajun He , Zheyuan Liu , Yan Yu , Liuyi Li . Alkyl-linked TiO2@COF heterostructure facilitating photocatalytic CO2 reduction by targeted electron transport. Chinese Journal of Structural Chemistry, 2024, 43(12): 100453-100453. doi: 10.1016/j.cjsc.2024.100453
Rongjun Zhao , Tai Wu , Yong Hua , Yude Wang . Improving performance of perovskite solar cells enabled by defects passivation and carrier transport dynamics regulation via organic additive. Chinese Chemical Letters, 2025, 36(2): 109587-. doi: 10.1016/j.cclet.2024.109587
Xin Jiang , Han Jiang , Yimin Tang , Huizhu Zhang , Libin Yang , Xiuwen Wang , Bing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415
Shuwen SUN , Gaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399
Shu-Ran Xu , Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173
Chengcheng Xie , Chengyi Xiao , Hongshuo Niu , Guitao Feng , Weiwei Li . Mesoporous organic solar cells. Chinese Chemical Letters, 2024, 35(11): 109849-. doi: 10.1016/j.cclet.2024.109849
Jinge Zhu , Ailing Tang , Leyi Tang , Peiqing Cong , Chao Li , Qing Guo , Zongtao Wang , Xiaoru Xu , Jiang Wu , Erjun Zhou . Chlorination of benzyl group on the terminal unit of A2-A1-D-A1-A2 type nonfullerene acceptor for high-voltage organic solar cells. Chinese Chemical Letters, 2025, 36(1): 110233-. doi: 10.1016/j.cclet.2024.110233
Hao Zhang , Haonan Qu , Ehsan Bahojb Noruzi , Haibing Li , Feng Liang . A nanocomposite film with layer-by-layer self-assembled gold nanospheres driven by cucurbit[7]uril for the selective transport of L-tryptophan and lysozyme. Chinese Chemical Letters, 2025, 36(1): 109731-. doi: 10.1016/j.cclet.2024.109731
Tao LIU , Yuting TIAN , Ke GAO , Xuwei HAN , Ru'nan MIN , Wenjing ZHAO , Xueyi SUN , Caixia YIN . A photothermal agent with high photothermal conversion efficiency and high stability for tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1622-1632. doi: 10.11862/CJIC.20240107
Hongrui Zhang , Miaoying Cui , Yongjie Lv , Yongfang Rao , Yu Huang . A short review on research progress of ZnIn2S4-based S-scheme heterojunction: Improvement strategies. Chinese Chemical Letters, 2025, 36(4): 110108-. doi: 10.1016/j.cclet.2024.110108