Citation: Pang Li-Hua, Li Jing-Min, Lu Xue-Min, Lu Qing-Hua. Spectroscopic investigation on chirality transfer in additive-driven self-assembly of block polymers[J]. Chinese Chemical Letters, ;2017, 28(7): 1358-1364. doi: 10.1016/j.cclet.2017.04.009 shu

Spectroscopic investigation on chirality transfer in additive-driven self-assembly of block polymers

  • Corresponding author: Lu Xue-Min, xueminlu@sjtu.edu.cn
  • Received Date: 20 February 2017
    Revised Date: 3 April 2017
    Accepted Date: 11 April 2017
    Available Online: 23 July 2017

Figures(8)

  • Chiral supramolecules prepared by the additive-driven self-assembly of block copolymers provide a facile method to construct helical nanostructures. In this study, we investigated the chiral transfer from chiral tartaric acid to poly(styrene)-b-poly(ethylene oxide) using small-angle X-ray scattering, transmission electron microscopy, circular dichroism, and vibrational circular dichroism. The results showed that the chirality was transferred to both the segments of block copolymer irrespective of the interaction with the chiral additives and formation of helical phase structure. However, the chirality transfer was carried out using different methods: for poly(ethylene oxide) segments, the chirality transfer was carried out via direct hydrogen bond formation; for polystyrene segments, the chirality transfer was carried out via the cooperative motion of block copolymers during the thermal annealing.
  • 加载中
    1. [1]

      Cecconello A., Kahn J.S., Lu C.H.. DNA scaffolds for the dictated assembly of left-/right-handed plasmonic Au NP helices with programmed chiro-optical properties[J]. J. Am. Chem. Soc., 2016,138:9895-9901. doi: 10.1021/jacs.6b04096

    2. [2]

      Zhang L., Wang T., Shen Z.. Chiral nanoarchitectonics: towards the design, self-assembly, and function of nanoscale chiral twists and helices[J]. Adv. Mater., 2016,28:1044-1059. doi: 10.1002/adma.201502590

    3. [3]

      Liu M., Zhang L., Wang T.. Supramolecular chirality in self-assembled systems[J]. Chem. Rev., 2015,115:7304-7397. doi: 10.1021/cr500671p

    4. [4]

      Jung J.H., Moon S.J., Ahn J.. Controlled supramolecular assembly of helical silica nanotube-graphene hybrids for chiral transcription and separation[J]. ACS Nano, 2013,7:2595-2601. doi: 10.1021/nn306006s

    5. [5]

      Bueno-Alejo C.J., Villaescusa L.A., Garcia-Bennett A.E.. Supramolecular transcription of guanosine monophosphate into mesostructured silica[J]. Angew. Chem. Int. Ed., 2014,53:12106-12110. doi: 10.1002/anie.201407005

    6. [6]

      Barclay T.G., Constantopoulos K., Matisons J.. Nanotubes self-assembled from amphiphilic molecules via helical intermediates[J]. Chem. Rev., 2014,114:10217-10291. doi: 10.1021/cr400085m

    7. [7]

      Fu X.M., Liu Z.J., Cai S.X.. Electrochemical aptasensor for the detection of vascular endothelial growth factor (VEGF) based on DNA-templated Ag/Pt bimetallic nanoclusters[J]. Chin. Chem. Lett., 2016,27:920-926. doi: 10.1016/j.cclet.2016.04.014

    8. [8]

      Oelerich J., Roelfes G.. DNA-based asymmetric organometallic catalysis in water[J]. Chem. Sci., 2013,4:2013-2017. doi: 10.1039/c3sc00100h

    9. [9]

      Anger E., Iida H., Yamaguchi T.. Synthesis and chiral recognition ability of helical polyacetylenes bearing helicene pendants[J]. Polym. Chem., 2014,5:4909-4914. doi: 10.1039/C4PY00692E

    10. [10]

      Miyabe T., Iida H., Banno M.. Synthesis and visualization of a core crosslinked star polymer carrying optically active rigid-rod helical polyisocyanide arms and its chiral recognition ability[J]. Macromolecules, 2014,44:8687-8692.  

    11. [11]

      Zou W., Yan Y., Fang J.. Biomimetic superhelical conducting microfibers with homochirality for enantioselective sensing[J]. J. Am. Chem. Soc., 2014,136:578-581. doi: 10.1021/ja409796b

    12. [12]

      Akai Y., Konnert L., Yamamoto T.. Asymmetric Suzuki-Miyaura crosscoupling of 1-bromo-2-naphthoates using the helically chiral polymer ligand PQXphos[J]. Chem. Commun., 2015,51:7211-7214. doi: 10.1039/C5CC01074H

    13. [13]

      Iida H., Iwahana S., Mizoguchi T.. Main-chain optically active riboflavin polymer for asymmetric catalysis and its vapochromic behavior[J]. J. Am. Chem. Soc., 2012,134:15103-15113. doi: 10.1021/ja306159t

    14. [14]

      Jahromi B.T., Kharat A.N., Zamanian S.. Chiral electron deficient ruthenium helical coordination polymer as a catalyst for the epoxidation of substituted styrenes[J]. Chin. Chem. Lett., 2015,26:137-140. doi: 10.1016/j.cclet.2014.10.013

    15. [15]

      Feng X., Marcon V., Pisula W.. Towards high charge-carrier mobilities by rational design of the shape and periphery of discotics[J]. Nat. Mater., 2009,8:421-426. doi: 10.1038/nmat2427

    16. [16]

      Réthoré C., Avarvari N., Canadell E.. Chiral molecular metals: syntheses, structures, and properties of the AsF6-salts of racemic (±)-, (R)-, and (S)-tetrathiafulvalene-oxazoline derivatives[J]. J. Am. Chem. Soc., 2005,127:5748-5749. doi: 10.1021/ja0503884

    17. [17]

      Yan Y., Wang R., Qiu X.. Hexagonal superlattice of chiral conducting polymers self-assembled by mimicking β-sheetproteins with anisotropic electrical transport[J]. J. Am. Chem. Soc., 2010,132:12006-12012. doi: 10.1021/ja1036447

    18. [18]

      Hayasaka H., Miyashita T., Tamura K.. Helically π-stacked conjugated polymers bearing photoresponsive and chiral moieties in side chains: reversible photoisomerization-enforced switching between emission and quenching of circularly polarized fluorescence[J]. Adv. Funct. Mater., 2010,20:1243-1250. doi: 10.1002/adfm.v20:8

    19. [19]

      Nagata Y., Takagi K., Suginome M.. Solid polymer films exhibiting handedness-switchable, full-color-tunable selective reflection of circularly polarized light[J]. J. Am. Chem. Soc., 2014,136:9858-9861. doi: 10.1021/ja504808r

    20. [20]

      Wu H., Zhou Y., Yin L.. Helical self-assembly induced singlet-triplet emissive switching in a mechanically-sensitive system[J]. J. Am. Chem. Soc., 2017,139:785-791. doi: 10.1021/jacs.6b10550

    21. [21]

      Yin L., Wu H., Zhu M., Zou Q., Yan Q., Zhu L.. Sequential block copolymer selfassemblies controlled by metal-ligand stoichiometry[J]. Langmuir, 2016,32:6429-6436. doi: 10.1021/acs.langmuir.6b01787

    22. [22]

      Higuchi T., Sugimori H., Jiang X.. Morphological control of helical structures of an ABC-type triblock terpolymer by distribution control of a blending homopolymer in a block copolymer microdomain[J]. Macromolecules, 2013,46:6991-6997. doi: 10.1021/ma401193u

    23. [23]

      Hong S., Higuchi T., Sugimori H.. Highly oriented and ordered double-helical morphology in ABC triblock terpolymer films up to micrometer thickness by solvent evaporation[J]. Polymer, 2012,44:567-572. doi: 10.1038/pj.2012.69

    24. [24]

      Ishige R., Higuchi T., Jiang X.. Structural analysis of microphase separated interface in an ABC-type triblock terpolymer by combining methods of synchrotron-radiation grazing incidence small-angle X-ray scattering and electron microtomography[J]. Macromolecules, 2015,48:2697-2705. doi: 10.1021/ma502596a

    25. [25]

      Jinnai H., Kaneko T., Matsunaga K.. A double helical structure formed from an amorphous, achiral ABC triblock terpolymer[J]. Soft Matter, 2009,5:2042-2046. doi: 10.1039/b901008d

    26. [26]

      Chen C.K., Hsueh H.Y., Chiang Y.W.. Single helix to double gyroid in chiral block copolymers[J]. Macromolecules, 2010,43:8637-8644. doi: 10.1021/ma1009885

    27. [27]

      Ho R.M., Chiang Y.W., Chen C.K.. Block copolymers with a twist[J]. J. Am. Chem. Soc., 2009,131:18533-18542. doi: 10.1021/ja9083804

    28. [28]

      Ho R.M., Li M.C., Lin S.C.. Transfer of chirality from molecule to phase in self-assembled chiral block copolymers[J]. J. Am. Chem. Soc., 2012,134:10974-10986. doi: 10.1021/ja303513f

    29. [29]

      Tseng W.H., Chen C.K., Chiang Y.W.. Helical nanocomposites from chiral block copolymer templates[J]. J. Am. Chem. Soc., 2009,131:1356-1357. doi: 10.1021/ja808092v

    30. [30]

      Wang H.F., Yu L.H., Wang X.B.. A facile method to fabricate double gyroid as a polymer template for nanohybrids[J]. Macromolecules, 2014,47:7993-8001. doi: 10.1021/ma501957b

    31. [31]

      Yao L., Lu X., Chen S.. Formation of helical phases in achiral block copolymers by simple addition of small chiral additives[J]. Macromolecules, 2014,47:6547-6553. doi: 10.1021/ma501714g

    32. [32]

      Lin Y., Daga V.K., Anderson E.R.. Nanoparticle-driven assembly of block copolymers: a simple route to ordered hybrid materials[J]. J. Am. Chem. Soc., 2011,133:6513-6516. doi: 10.1021/ja2003632

    33. [33]

      Yao L., Lin Y., Watkins J.J.. Ultrahigh loading of nanoparticles into ordered block copolymer composites[J]. Macromolecules, 2014,47:1844-1849. doi: 10.1021/ma500338p

    34. [34]

      Yao L., Watkins J.J.. Photoinduced disorder in strongly segregated block copolymer composite films for hierarchical pattern formation[J]. ACS Nano, 2013,7:1513-1523. doi: 10.1021/nn3052956

    35. [35]

      Maeda K., Wakasone S., Shimomura K.. Chiral amplification in polymer brushes consisting of dynamic helical polymer chains through the long-range communication of stereochemical information[J]. Macromolecules, 2014,47:6540-6546. doi: 10.1021/ma501612e

    36. [36]

      Yashima E., Ousaka N., Taura D.. Supramolecular helical systems: helical assemblies of small molecules, foldamers, and polymers with chiral amplification and their functions[J]. Chem. Rev., 2016,116:13752-13990. doi: 10.1021/acs.chemrev.6b00354

  • 加载中
    1. [1]

      Yi-Chang Yang Rui-Xi Wang Li-Ming Wu Ling Chen . Regulating the coplanarity of π-conjugated units through hydrogen bonding in FAHC2O4 and FAH2C3N3S3 crystals. Chinese Journal of Structural Chemistry, 2025, 44(10): 100714-100714. doi: 10.1016/j.cjsc.2025.100714

    2. [2]

      Yun Zhou Geqian Fang Haiyan Wang Wenjun Yu Chun Zhu Jin-Xia Liang Jian Lin . Non-covalent interactions between adsorbed •OH species and UiO-66-NH2 for methane hydroxylation. Chinese Journal of Structural Chemistry, 2025, 44(8): 100629-100629. doi: 10.1016/j.cjsc.2025.100629

    3. [3]

      Gui-Xin Yan Er-Xia Chen Jin-Xia Yang Jian Zhang and Qipu Lin . Chiral europium-organotin oxo-clusters with dual-emission circularly polarized luminescence. Chinese Journal of Structural Chemistry, 2025, 44(12): 100759-100759. doi: 10.1016/j.cjsc.2025.100759

    4. [4]

      Teng-Yu HuangJunliang SunDe-Xian WangQi-Qiang Wang . Recent progress in chiral zeolites: Structure, synthesis, characterization and applications. Chinese Chemical Letters, 2024, 35(12): 109758-. doi: 10.1016/j.cclet.2024.109758

    5. [5]

      Qianyun YeYuanyuan LiangYuhe YuanXiaohuan SunLiqi ZhuXuan WuJie HanRong Guo . pH-responsive chiral supramolecular cysteine-Zn2+-indocyanine green assemblies for triple-level chirality-specific anti-tumor efficacy. Chinese Chemical Letters, 2025, 36(5): 110432-. doi: 10.1016/j.cclet.2024.110432

    6. [6]

      Qiao ZhangXin TanZihang LiuJingyu MaDongqi CaoFenfang LiShengyi Dong . Optically healable and mechanically tough supramolecular glass from low-molecular-weight compounds. Chinese Chemical Letters, 2025, 36(8): 110660-. doi: 10.1016/j.cclet.2024.110660

    7. [7]

      Zhao-Xia LianXue-Zhi WangChuang-Wei ZhouJiayu LiMing-De LiXiao-Ping ZhouDan Li . Producing circularly polarized luminescence by radiative energy transfer from achiral metal-organic cage to chiral organic molecules. Chinese Chemical Letters, 2024, 35(8): 109063-. doi: 10.1016/j.cclet.2023.109063

    8. [8]

      Wenying CuiZhetong JinWentao FuChengshuo Shen . Flag-hinge-like highly luminescent chiral nanographenes with twist geometry. Chinese Chemical Letters, 2024, 35(11): 109667-. doi: 10.1016/j.cclet.2024.109667

    9. [9]

      Genlin SunYachun LuoZhihong YanHongdeng QiuWeiyang Tang . Chiral metal-organic frameworks-based materials for chromatographic enantioseparation. Chinese Chemical Letters, 2024, 35(12): 109787-. doi: 10.1016/j.cclet.2024.109787

    10. [10]

      Yi ZhouWei ZhangRong FuJiaxin DongYuxuan LiuZihang SongHan HanKang Cai . Self-assembly of two pairs of homochiral M2L4 coordination capsules with varied confined space using Tröger's base ligands. Chinese Chemical Letters, 2025, 36(2): 109865-. doi: 10.1016/j.cclet.2024.109865

    11. [11]

      Wenxiong YuChenyu YangXian FengChengshuo Shen . Scholl cyclization of [6]helicenes into negatively curved hexa[7]circulenes. Chinese Chemical Letters, 2025, 36(11): 110939-. doi: 10.1016/j.cclet.2025.110939

    12. [12]

      Fengying YeMing HuJun LuoWei YuZhirong XuJinjin FuYansong Zheng . Significantly boosting circularly polarized luminescence by synergy of helical and planar chirality. Chinese Chemical Letters, 2025, 36(5): 110724-. doi: 10.1016/j.cclet.2024.110724

    13. [13]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    14. [14]

      Xue WuYupeng LiuBingzhe WangLingyun LiZhenjian LiQingcheng WangQuansheng ChengGuichuan XingSongnan Qu . Rationally assembling different surface functionalized carbon dots for enhanced near-infrared tumor photothermal therapy. Acta Physico-Chimica Sinica, 2025, 41(9): 100109-0. doi: 10.1016/j.actphy.2025.100109

    15. [15]

      Yiming Yang Lichao Sun Qingfeng Zhang . Plasmonic nanocrystals with intrinsic chirality: Biomolecule-directed synthesis and applications. Chinese Journal of Structural Chemistry, 2025, 44(1): 100467-100467. doi: 10.1016/j.cjsc.2024.100467

    16. [16]

      Gongxi LiJun JinJunxuan TuHaoguo YueYing WangXiaohui JiaWeiyuan YinZhenglin HanYuxuan DengChunfeng ShiYonggang Zhen . Intrinsically stretchable polymer semiconductors synergistically constructed by hydrogen bonds and metal coordination. Chinese Chemical Letters, 2025, 36(12): 111716-. doi: 10.1016/j.cclet.2025.111716

    17. [17]

      Ziqi Chen Miriding Mutailipu . Achieving the birefringence-bandgap trade-off: hydrogen-bond engineered biuret-cyanurate. Chinese Journal of Structural Chemistry, 2025, 44(10): 100695-100695. doi: 10.1016/j.cjsc.2025.100695

    18. [18]

      Junmeng LuoQiongqiong WanSuming Chen . Chemistry-driven mass spectrometry for structural lipidomics at the C=C bond isomer level. Chinese Chemical Letters, 2025, 36(1): 109836-. doi: 10.1016/j.cclet.2024.109836

    19. [19]

      Xiaoqian WangYanling ShenLong ChenLizhi FangKuppusamy KanagarajMing RaoChunying FanWanhua WuCheng Yang . Azobenzene-winged phenanthroline for supramolecular chirality sensing and multidimensional chiroptical manipulation via solvent, light, temperature, and redox. Chinese Chemical Letters, 2026, 37(2): 111710-. doi: 10.1016/j.cclet.2025.111710

    20. [20]

      Liyang Liu De-Xiang Zhang Tian Wen . MOF-driven interaction engineering in solid polymer electrolytes for durable lithium metal batteries. Chinese Journal of Structural Chemistry, 2025, 44(5): 100517-100517. doi: 10.1016/j.cjsc.2025.100517

Metrics
  • PDF Downloads(2)
  • Abstract views(1389)
  • HTML views(32)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return